传热学知识点总结(合集11篇)

山崖发表网工作总结2024-03-26 09:15:0421

传热学知识点总结 第1篇

01质点的运动(1)------直线运动

1)匀变速直线运动

1.平均速度V平=s/t(定义式)

2.中间时刻速度Vt/2=V平=(Vt+Vo)/2

3.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2

4.位移s=V平t=Vot+at2/2=Vt/2t

7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a0;反向则a0}

2)自由落体运动

1.初速度Vo=0 2.末速度Vt=gt

3.下落高度h=gt2/2(从Vo位置向下计算)

4.推论Vt2=2gh

02质点的运动:

1)平抛运动

1.水平方向速度:Vx=Vo

2.竖直方向速度:Vy=gt

3.水平方向位移:x=Vot

4.竖直方向位移:y=gt2/2

5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

合速度方向与水平夹角:tg=Vy/Vx=gt/V0

7.合位移:s=(x2+y2)1/2,

位移方向与水平夹角:tg=y/x=gt/2Vo

8.水平方向加速度:ax=0;竖直方向加速度:ay=g

2)匀速圆周运动

1.线速度V=s/t=2r/T 2.角速度=/t=2/T=2f

3.向心加速度a=V2/r=2r=(2/T)2r

4.向心力F心=mV2/r=m2r=mr(2/T)2=mv=F合

5.周期与频率:T=1/f 6.角速度与线速度的关系:V=r

7.角速度与转速的关系=2n(此处频率与转速意义相同)

8.主要物理量及单位:弧长(s):米(m);角度:弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度():rad/s;向心加速度:m/s2。

3)万有引力

1.开普勒第三定律:T2/R3=K(=42/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

2.万有引力定律:F=Gm1m2/r2 (G=,方向在它们的连线上)

3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;=(GM/r3)1/2;T=2(r3/GM)1/2{M:中心天体质量}

5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=;V2=;V3=

6.地球同步卫星GMm/(r地+h)2=m42(r地+h)/T2{h36000km,h:距地球表面的高度,r地:地球的半径}

03力:

1.重力G=mg (方向竖直向下,g=,作用点在重心,适用于地球表面附近)

2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

3.滑动摩擦力F=FN {与物体相对运动方向相反,:摩擦因数,FN:正压力(N)}

4.静摩擦力0f静fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)

5.万有引力F=Gm1m2/r2 (G=,方向在它们的连线上)

6.静电力F=kQ1Q2/r2 (k=,方向在它们的连线上)

7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

8.安培力F=BILsin (为B与L的夹角,当LB时:F=BIL,B//L时:F=0)

9.洛仑兹力f=qVBsin (为B与V的夹角,当VB时:f=qVB,V//B时:f=0)

传热学知识点总结 第2篇

工程背景:在石油化工生产过程中,常常需要将各种石油产最(如汽抽、煤油、柴油

等)进行冷却,本设计以某炼油厂冷却煤油产品为例,让学生熟悉列管式换热器的设计过程。

设计的目的:通过对煤油产品冷却的列管式换热器设计,达到让学生了解该换热器的结构特点,并能根据工艺要求选择适当的类型,同时还能根据传热的基本原理,选择流程,确定换热器的基本尺寸,计算传热面积以及计算流体阻力。

2、设计任务及操作条件

(l)处理能力:

(x)× 104t/a煤油

(2)设备型式

列管式换热器。

(3)操作条件

①煤油:入口温度:140;出口温度:40℃。

②冷却介质:自来水,人口温度:30℃,出口温度:50℃。

③允许压强降:不大于105Pa。

④每年按330天计,每天24h连续运行。

(4)设计项目

①设计方案简介:对确定的工艺流程及换热器型式进行简要论述。

②换热器的工艺计算:确定换热器的传热面积。

③换热器的主要结构尺寸设计。

④主要辅助设备选型。

⑤绘制换热器总装配图。

3、设计说明书的内容

①目录;

②设计题目及原始数据(任务书);

③论述换热器总体结构(换热器型式、主要结构)的选择;

④换热器加热过程有关计算(物料衡算、热量衡算;传热面积、换热管型号、壳体直径等);

⑤设计结果概要(主要设备尺寸、衡算结果等);

⑥主体设备设计计算及说明;

⑦主要零件的强度计算(选做);

⑧附属设备的选择(选做);

⑨参考文献;

⑩后记及其他。

4、设计图纸要求

附工艺流程图及冷凝器装配图一张。

2 乙醇一水精馏塔项产品冷凝器的设计任务书

1、设计题目

乙醇一水精馏塔顶产品全凝器的设计。

设计一冷凝器,冷凝乙醇一水系统精馏塔顶部的馏出产品。产品中乙醇的浓度为95%,处理量为(x)× 104t/a,要求全部冷凝。冷凝器操作压力为常压,冷却介质为水,其压力为0. 3MPa,进口温度为30℃,出口温度为40℃。

工程背景:采用薯类与谷类原料进行发酵。发酵法制乙醇是一个很复杂的生化过程,发酵在密封的发酵罐中进行产生的CO2的纯度达99%以上,其余为气态杂质,组分(以C O2质量为基准)为:乙醇,脂类:,酸类:8. 08%。成熟发酵醪中的乙醇必须经过初馏、精馏和除杂才能得到合格的乙醉。本课程设计即为粗乙醇(初馏塔出来的乙醇一水溶液),在进行精馏获得合格产品的过程中,精馏塔顶冷凝器的设计。发酵法制乙醇的工艺也可以参考有关书籍或文献资料。

设计的目的:通过对乙醇一水系统精馏塔顶产品全凝器的设计,使学生了解和掌握化工单元操作设备设计的步骤、方法及基本技能,熟悉文献资料及物性参数的查阅和收集方法,懂得如何论证优化设计方案,合理科学地应用公式及数据。在设计中提高学生的分析能力和解决问题的能力。

2、设计任务及操作条件

①处理量:(x) × 104t/a ②产品浓度:含乙醇95%;

③冷却介质:P为 MPa,入口温度30℃,出口温度40℃;

④操作压力:常压;

⑤允许压降:不大于l05 Pa;

⑥每年按330天计,每天24h连续运行。

⑦设计项目:

a.设计方案简介:对确定的工艺流程及换热器型式进行简要论述。

b.换热器的工艺计算:确定换热器的传热面积。

c.换热器的主要结构尺寸设计。

d.主要辅助设备选型。

e.绘制换热器总装配图。

3、设计说明书的内容

①目录;

②设计题目及原始数据(任务书);

③论述换热器总体结构(换热器型式、主要结构)的选择;

④换热器加热过程有关计算(物料衡算、热量衡算、传热面积、换热管型号、壳体直径等);

⑤设计结果概要(主要设备尺寸、衡算结果等); ⑥主体设备设计计算及说明; ⑦主要零件的强度计算(选做); ⑧附属设备的选择(选做); ⑨参考文献;

⑩后记及其他。

4、设计图纸要求

附工艺流程图及冷凝器装配图一张。

5、设计思考题

①换热器及工作原理?

②影响传热的主要因素有哪些?

③何为冷凝器,冷凝器的主要型式及结构?

④选择走管程或壳程的介质应考虑什么原则? ⑤循环冷却水的进出口温度确定原则?

⑥设计冷凝器的主要步骤。

⑦对冷凝器的设计你进行了哪些优化?

6、部分设计问题指导

学生在接受设计任务后,首先应明确设计的步骤、方向、如何查阅有关数据和收集资料,并确定设计方案。本设计应在以下几个方面的加以指导。

(l)物性数据的查阅

在设计中涉及水,乙醇等的多种物理参数,如密度、豁度、比热容、汽化潜热、导热系 数等等,如何正确查阅数据是化工技术人员的基本功,因此在这方面应加以指导。

(2)经验公式的正确应用

在设计中要用到某些经验公式,如果选择不当的则会使设计发生误差。如壳程换热系数计算时,如果采用单管公式显然不对。因为工业换热器的气体冷凝比单管要复杂的多,从上排管外流下的冷凝液在下排管会产生一定的撞击和飞溅,从而使下一排管外的冷凝膜并不像单管叠加时那么厚,同时附加的扰动又会加速传热,在缺乏可靠数据可采用经验公式估算。

(3)初选冷凝器

根据计算出的传热面积A。,从国家颁布的换热器标准系列中初选冷凝器,既不能选得 太大浪费,又要满足传热需要。此外,标准设备的管数与计算值不一致时如何考虑等,都需 要加以引导。

(4)结构设计

指导学生对关键部位进行设计并提出优化设想,如提高传热效果、降低成本等。

3 正戊烷冷凝器的设计任务书

1、设计题目

正戊烷冷凝器的设计。

设计课题工程背景:炼油厂精馏塔塔顶冷凝器蒸气主要是正戊烷,以此为原料设计一正戊烷冷凝器。

2、设计任务及操作条件

①处理量:(x)×104t/a;

②正戊烷冷凝温度为℃,冷凝液于饱和液体下离开冷凝器;

③冷却介质:地下水,流量为7000kg/h,人口温度:20℃、25℃、30℃;

④允许压强降:不大于105Pa;

⑤每年按330天计,每天24h连续运行;

⑥设备型式:立式列管冷凝器;

⑦设计项目:

a.设计方案简介:对确定的工艺流程及换热器型式进行简要论述;

b.换热器的工艺计算:确定换热器的传热面积;

c.选择合适的立式列管冷凝器并进行较核计算; d.对冷凝器的附件进行设计,包括结构设计; e.绘制换热器总装配图; ⑧设计要求:

a.说明书采用统一封面和纸张; b.方案和流程的选择要阐明理由; c.设计过程思路清晰,内容完全;

d.设计、计算中,所采用的公式、数据、图表等注明出处,有些需说明理由; e.一律用钢笔或打印填写,要排列整齐,字体端正,书面整洁; f.计算过程均应写出;

g.设备图以制图要求为准; h.集中做设计,独立完成。

3、设计说明书的内容

①课程名称、首页、目录及页码; ②前言;

③简述设计内容,自己设计的特点,引用的标准等; ④热量衡算及初步估算换热面积; ⑤冷凝器的选型及流动空间的选择; ⑥工艺流程图;

⑦冷凝器的校核计算; ⑧结构及附件设计计算; ⑨冷凝器的主要数据一览表; ⑩设计结果评价; ⑧附立式列管冷凝器总装图。

4、设计图要求

附工艺流程图及冷凝器装配图一张。

5、设计答辩指导

①弄清整个设计过程脉络,关键步骤;

②基本概念正确,各计算方法有依据,准确;

③选型的依据,选择管程、壳程流体,流向或某一值的考虑;

④如何改进设计?-i有何可修改的地方?如何修改?

⑤分析、评荆所做设计是否可操作,经济性如何?

⑥图面布里是否符合制图标准?

⑦各部分结构在图上是否正确体现?

⑧设计说明是否清晰,文字有何错误?

4、甲醇冷凝器的设计

1、设计题目

甲醇冷凝器的设计。

2、设计任务及操作条件

①处理量:(x)×104t/a;

②甲醇进口温度为58℃,冷凝液于饱和液体下离开冷凝器;

③冷却介质:地下水,流量为7000kg/h,入口温度: 30℃;

④允许压强降:不大于105Pa;

⑤每年按330天计,每天24h连续运行;

⑥设备型式:列管冷凝器;

⑦设计项目:

a.设计方案简介:对确定的工艺流程及换热器型式进行简要论述;

b.换热器的工艺计算:确定换热器的传热面积;

c.选择合适的立式列管冷凝器并进行较核计算; d.对冷凝器的附件进行设计,包括结构设计; e.绘制换热器总装配图; ⑧设计要求:

a.说明书采用统一封面和纸张; b.方案和流程的选择要阐明理由; c.设计过程思路清晰,内容完全;

d.设计、计算中,所采用的公式、数据、图表等注明出处,有些需说明理由; e.一律用钢笔或打印填写,要排列整齐,字体端正,书面整洁; f.计算过程均应写出;

g.设备图以制图要求为准; h.集中做设计,独立完成。

3、设计说明书的内容

①课程名称、首页、目录及页码; ②前言;

③简述设计内容,自己设计的特点,引用的标准等; ④热量衡算及初步估算换热面积; ⑤冷凝器的选型及流动空间的选择; ⑥工艺流程图;

⑦冷凝器的校核计算; ⑧结构及附件设计计算; ⑨冷凝器的主要数据一览表; ⑩设计结果评价;

⑧附立式列管冷凝器总装图。

4、设计图要求

附工艺流程图及冷凝器装配图一张。

5、设计答辩指导

①弄清整个设计过程脉络,关键步骤;

②基本概念正确,各计算方法有依据,准确;

③选型的依据,选择管程、壳程流体,流向或某一值的考虑;

④如何改进设计?-i有何可修改的地方?如何修改?

⑤分析、评荆所做设计是否可操作,经济性如何?

⑥图面布里是否符合制图标准?

⑦各部分结构在图上是否正确体现?

⑧设计说明是否清晰,文字有何错误?

传热学知识点总结 第3篇

知识点一:设计分析

合理的设计分析是成功地进行技术设计的关键一步,分析得当可以指引以后的技术上可以少走或不走弯路。

产品本身是一个整体,包括功能、造型、材料等,但任何产品都不是孤立存在的,一方面,它是为人服务的,人的需求在很大程度上决定着产品的设计;另一方面,它是在一定的环境中使用的,必然受到环境的制约,并对环境产生影响。因此,设计任何产品都应综合考虑物、人、环境三个方面。详见书本P95台灯分析的例子。

知识点二:方案的构思方法

方案的构思是指人们在一定的调查研究和设计分析的基础上,通过思考将客观存在的各要素按照一定的规律架构起来,形成一个完成的抽象物,并采用图、模型、语言、文字等方式呈现思维过程。

方案的构思过程中,考虑到的许多问题是模糊的、零散的、不系统的,而且也是不具体的,怎样把这些模糊的、零散的、不系统的设计想法变成我们能看到的、比较完整的具体方案呢这就需要一定的方法

(1)草图法

设计时,我们可以运用草图法进行构思。草图不仅能将一些想法明确地表达出来,而且可以随意修改。在运用草图法进行构思的过程中,学生可以捕捉灵感、自由发挥、不受约束。

(2)模仿法

模仿现实生活中存在的一些事物进行方案的构思。如仿生技术

(3)联想法

要用联想的方法进行方案的构思,人们就必须具备丰富的实践经验、较广的见识、较好的知识基础及丰富的想象力。

利用联想法进行方案的构思,不一定能使技术设计一次性成功,但它有可能为构思找到一种方法或一条形成方案的路径。运用联想法进行构思后,我们不能盲目地实践,而应该首先对方案进行科学论证,而后再进行制作和实施。

(4)奇特性构思法

奇特性构思法所形成的方案一般具有原创性。这些构思在历史上很少发生,或从来没有发生过,甚至有些构思在当前的科学、技术、经济条件下无法实现。

知识点三:方案的比较和权衡

在多个方案经构思形成后,我们往往要对这些方案进行评判和比较,同时要从设计的目的出发,针对一些相互制约的问题进行权衡和决策,最后选出较为满意的方案或集中各方案的优点进行改进。

对方案进行比较和权衡的过程是一个综合考虑的过程,各个指标并不是独立的,它们相互关联、相互制约。抓住设计的核心与关键是权衡设计方案的必要条件。

考虑的方面:实用、美观、创新、稳定性、安全性、环保性、加工难易程度、经济成本。

传热学知识点总结 第4篇

传热学问答题答案

第一章

思考题

1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。

答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。联系是:在发生对流换热的同时必然伴生有导热。

导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。

2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。试写出这三个公式并说明其中每一个符号及其意义。

答:① 傅立叶定律:

向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。

② 牛顿冷却公式:

-固体表面温度;qdtdtdx,其中,q-热流密度;-导热系数;dx-沿x方,其中,q-热流密度;h-表面传热系数;

4qh(twtf)twtf-流体的温度。 ③ 斯忒藩-玻耳兹曼定律:qT,其中,q-热流密度;-斯忒藩-玻耳

兹曼常数;T-辐射物体的热力学温度。

3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?

2答:① 导热系数的单位是:W/();② 表面传热系数的单位是:W/();③ 传热

2系数的单位是:W/()。这三个参数中,只有导热系数是物性参数,其它均与过程有关。

4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。试分析引入传热方程式的工程实用意义。

答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。

5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。而一旦壶内的水烧干后,水壶很快就烧坏。试从传热学的观点分析这一现象。

答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换热系数小,壶底的热量不能很快被传走,故此壶底升温很快,容易被烧坏。

6. 用一只手握住盛有热水的杯子,另一只手用筷子快速搅拌热水,握杯子的手会显著地感到热。试分析其原因。

答:当没有搅拌时,杯内的水的流速几乎为零,杯内的水和杯壁之间为自然对流换热,自热对流换热的表面传热系数小,当快速搅拌时,杯内的水和杯壁之间为强制对流换热,表面传热系数大,热水有更多的热量被传递到杯壁的外侧,因此会显著地感觉到热。

7. 什么是串联热阻叠加原则,它在什么前提下成立?以固体中的导热为例,试讨论有哪些情况可能使热量传递方向上不同截面的热流量不相等。

答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各串联环节热阻的和。例如:三块无限大平板叠加构成的平壁。例如通过圆筒壁,对于各个传热环节的传热面积不相等,可能造成热量传递方向上不同截面的热流量不相等。

8.有两个外形相同的保温杯A与B,注入同样温度、同样体积的热水后不久,A杯的外表面就可以感觉到热,而B杯的外表面则感觉不到温度的变化,试问哪个保温杯的质量较好?

答:B:杯子的保温质量好。因为保温好的杯子热量从杯子内部传出的热量少,经外部散热以后,温度变化很小,因此几乎感觉不到热。

第二章

思考题

1 试写出导热傅里叶定律的一般形式,并说明其中各个符号的意义。

tq=-gradtnx,其中:gradt为空间某点的温答:傅立叶定律的一般形式为:qn度梯度;是通过该点的等温线上的'法向单位矢量,指向温度升高的方向;为该处的热流密度矢量。

2 已知导热物体中某点在x,y,z三个方向上的热流密度分别为的 热密度矢量? qx,qy及qz,如何获得该点qqiqjqkxyz答:,其中i,j,k分别为三个方向的单位矢量量。

3 试说明得出导热微分方程所依据的基本定律。

答:导热微分方程式所依据的基本定律有:傅立叶定律和能量守恒定律。

4 试分别用数学语言将传热学术语说明导热问题三种类型的边界条件。

答:① 第一类边界条件:0时,twf10时((t)wf2()x

② 第二类边界条件:

③ 第三类边界条件:

5 试说明串联热阻叠加原则的内容及其使用条件。

答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各串联环节热阻的和。使用条件是对于各个传热环节的传热面积必须相等。

7.通过圆筒壁的导热量仅与内、外半径之比有关而与半径的绝对值无关,而通过球壳的导热量计算式却与半径的绝对值有关,怎样理解?

答:因为通过圆筒壁的导热热阻仅和圆筒壁的内外半径比值有关,而通过球壳的导热热阻却和球壳的绝对直径有关,所以绝对半径不同时,导热量不一样。

6 发生在一个短圆柱中的导热问题,在下列哪些情形下可以按一维问题来处理? 答:当采用圆柱坐标系,沿半径方向的导热就可以按一维问题来处理。

8 扩展表面中的导热问题可以按一维问题来处理的条件是什么?有人认为,只要扩展表面细长,就可按一维问题来处理,你同意这种观点吗?

答:只要满足等截面的直肋,就可按一维问题来处理。不同意,因为当扩展表面的截面不均时,不同截面上的热流密度不均匀,不可看作一维问题。

9 肋片高度增加引起两种效果:肋效率下降及散热表面积增加。因而有人认为,随着肋片高度的增加会出现一个临界高度,超过这个高度后,肋片导热热数流量反而会下降。试分析这一观点的正确性。

答:错误,因为当肋片高度达到一定值时,通过该处截面的热流密度为零。通过肋片的热流已达到最大值,不会因为高度的增加而发生变化。

10 在式(2-57)所给出的分析解中,不出现导热物体的导热系数,请你提供理论依据。 答:由于式(2-57)所描述的问题为稳态导热,且物体的导热系数沿x方向和y方向的数值相等并为常数。

11 有人对二维矩形物体中的稳态无内热源常物性的导热问题进行了数值计算。矩形的一个边绝热,其余三个边均与温度为f的流体发生对流换热。你能预测他所得的温度场的解吗? 答:能,因为在一边绝热其余三边为相同边界条件时,矩形物体内部的温度分布应为关于绝热边的中心线对称分布。

第三章

思考题

1. 试说明集总参数法的物理概念及数学处理的特点

答:当内外热阻之比趋于零时,影响换热的主要环节是在边界上的换热能力。而内部由于热阻很小而温度趋于均匀,以至于不需要关心温度在空间的分布,温度只是时间的函数, 数学描述上由偏微分方程转化为常微分方程、大大降低了求解难度。

2. 在用热电偶测定气流的非稳态温度场时,怎么才能改善热电偶的温度响应特性

答:要改善热电偶的温度响应特性,即最大限度降低热电偶的时间常数上要降低体面比,要选择热容小的材料,要强化热电偶表面的对流换热。 ccvhA,形状

3. 试说明”无限大平板”物理概念,并举出一二个可以按无限大平板处理的非稳态导热问题

答;所谓“无限大”平板,是指其长宽尺度远大于其厚度,从边缘交换的热量可以忽略 不计,当平板两侧换热均匀时,热量只垂直于板面方向流动。如薄板两侧均匀加热或冷却、炉墙或冷库的保温层导热等情况可以按无限大平板处理。

4. 什么叫非稳态导热的正规状态或充分发展阶段这一阶段在物理过程及数学处理上都有些什么特点

答:非稳态导热过程进行到一定程度,初始温度分布的影响就会消失,虽然各点温度仍 随时间变化,但过余温度的比值已与时间无关,只是几何位置(x/)和边界条件(Bi数) 的函数,亦即无量纲温度分布不变,这一阶段称为正规状况阶段或充分发展阶段。这一阶段的数学处理十分便利,温度分布计算只需取无穷级数的首项进行计算。

5. 有人认为,当非稳态导热过程经历时间很长时,采用图3-7记算所得的结果是错误的.理由是: 这个图表明,物体中各点的过余温度的比值与几何位置及Bi有关,而与时间无关.但当时间趋于无限大时,物体中各点的温度应趋近流体温度,所以两者是有矛盾的。你是否同意这种看法,说明你的理由。

答:我不同意这种看法,因为随着时间的推移,虽然物体中各点过余温度的比值不变 但各点温度的绝对值在无限接近。这与物体中各点温度趋近流体温度的事实并不矛盾。

6. 试说明Bi数的物理意义。Bio及Bi各代表什么样的换热条件有人认为,Bi代表了绝热工况,你是否赞同这一观点,为什么

答;Bi数是物体内外热阻之比的相对值。Bio时说明传热热阻主要在边界,内部温度趋于均匀,可以用集总参数法进行分析求解;Bi时,说明传热热阻主要在内部,可以近似认为壁温就是流体温度。认为Bio代表绝热工况是不正确的,该工况是指边界热阻相对于内部热阻较大,而绝热工况下边界热阻无限大。

7. 什么是分非稳态导热问题的乘积解法,他的使用条件是什么

答;对于二维或三维非稳态导热问题的解等于对应几个一维问题解的乘积,其解的形式是无量纲过余温度,这就是非稳态导热问题的乘积解法,其使用条件是恒温介质,第三类边 界条件或边界温度为定值、初始温度为常数的情况。

8.什么是”半无限大”的物体半无限大物体的非稳态导热存在正规阶段吗

答:所谓“半大限大”物体是指平面一侧空间无限延伸的物体:因为物体向纵深无限延 伸,初脸温度的影响永远不会消除,所以半死限大物体的非稳念导热不存在正规状况阶段。

10.本章的讨论都是对物性为常数的情形作出的,对物性温度函数的情形,你认为怎样获得其非稳态导热的温度场

答:从分析解形式可见,物体的无量纲过余温度是傅立叶数(/l)的负指数函数, 即表示在相同尺寸及换热条件下,导温系数越大的物体到达指定温度所需的时间越短、这正 说明导温系数所代表的物理含义。

第五章

复习题

1、试用简明的语言说明热边界层的概念。

答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。

2、与完全的能量方程相比,边界层能量方程最重要的特点是什么? 2A答:与完全的能量方程相比,它忽略了主流方向温度的次变化率2x2,因此仅适用于边界层内,不适用整个流体。

3、式(5―4)与导热问题的第三类边界条件式(2―17)有什么区别? httyy0答:(5―4)(t)h(twtf)h (2―11)

式(5―4)中的h是未知量,而式(2―17)中的h是作为已知的边界条件给出,此外(2―17)中的为固体导热系数而此式为流体导热系数,式(5―4)将用来导出一个包括h的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。

4、式(5―4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?

答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小

5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?

答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。

第六章

复习题

1、什么叫做两个现象相似,它们有什么共性?

答:指那些用相同形式并具有相同内容的微分方程式所描述的现象,如果在相应的时刻与相应的地点上与现象有关的物理量一一对于成比例,则称为两个现象相似。

凡相似的现象,都有一个十分重要的特性,即描述该现象的同名特征数(准则)对应相等。

(1) 初始条件。指非稳态问题中初始时刻的物理量分布。

(2) 边界条件。所研究系统边界上的温度(或热六密度)、速度分布等条件。

(3) 几何条件。换热表面的几何形状、位置、以及表面的粗糙度等。

(4) 物理条件。物体的种类与物性。

5、对于外接管束的换热,整个管束的平均表面传热系数只有在流动方向管排数大于一定值后才与排数无关,试分析原因。

答:因后排管受到前排管尾流的影响(扰动)作用对平均表面传热系数的影响直到10排管子以上的管子才能消失。

6、试简述充分发展的管内流动与换热这一概念的含义。

答:由于流体由大空间进入管内时,管内形成的边界层由零开始发展直到管子的中心线位置,这种影响才不发生变法,同样在此时对流换热系数才不受局部对流换热系数的影响。

7、什么叫大空间自然对流换热?什么叫有限自然对流换热?这与强制对流中的外部流动和内部流动有什么异同?

答:大空间作自然对流时,流体的冷却过程与加热过程互不影响,当其流动时形成的边界层相互干扰时,称为有限空间自然对流。

这与外部流动和内部流动的划分有类似的地方,但流动的动因不同,一个由外在因素引起的流动,一个是由流体的温度不同而引起的流动。

第七章

思考题

1.什么叫膜状凝结,什么叫珠状凝结膜状凝结时热量传递过程的主要阻力在什么地方? 答:凝结液体在壁面上铺展成膜的凝结叫膜状凝结,膜状凝结的主要热阻在液膜层,凝结液体在壁面上形成液珠的凝结叫珠状凝结。

2.在努塞尔关于膜状凝结理论分析的8条假定中,最主要的简化假定是哪两条

传热学知识点总结 第5篇

地球的温室效应分析:原因及其对策

内燃1301赵坤

摘要:地球自有人类出现至今,已为人类的生存提供了维持生命所必须的条件,但人类社会的发展和对地球的开发利用,使得地球正遭受着毁灭性破坏。工业化革命以来,人类的活动增加了大气中的温室气体,导致了地球升温,全球气候不断恶化??

关键词:全球变暖 温室效应 二氧化碳 对策

何为温室效应

温室效应,是指“大气中的温室气体通过对长波辐射的吸收而阻止地表热能耗散,从而导致地表温度增高的现象”。温室效应,又称“花房效应”,是大气保温效应的俗称。大气中的二氧化碳浓度增加,阻止地球热量的散失,使地球发生可感觉到的气温升高,这就是有名的“温室效应”。破坏大气层与地面间红外线辐射正常关系,吸收地球释放出来的红外线辐射,就像“温室”一样,促使地球气温升高的气体称为“温室气体”。

温室效应的一般机理

温室效应是由太阳——大气——地球系的物理学相互作用造成的,包含以下关键因素。

(1)太阳的温度大约为5800K它外发射光线,产生许多波长的光,波谱范围从紫外线到红外线,在550μm左右的可见光部分最大。

(2)这些光线的大部分通过大气传到地面,其中一部分被陆地或海洋表面吸收。

(3)地球表面也发射辐射,地球辐射的波长范围从接近红外线区域到远离红外线区域,峰值大约为10μm,比太阳光的波长长得多。如果没有大气存在,这个通量将与太阳入射通量平衡。

(4)无云的大气层对太阳光是相当透明的,但对于地球的红外辐射的透明程度则小得多,因此,大气被加热了,随后地球表面也显著增暖。

(5)大气中含有吸收红外辐射的所谓“温室气体”,包括水汽、二氧化碳、甲烷、氧化氮、臭氧和一些浓度更低但仍强烈吸引红外辐射的气体,如氯氟烃类。所有这些温室气体都在一个或多个狭窄的波长范围内吸收红外辐射,形成红外吸收带。由于含有自然吸收红外辐射气体的大气造成了大气的整个较低部分变暖,升温幅度超过30K,这一现象常常被称为自然温室效应。这种增温还可以被认为是由于发射红外辐射的有效高度增加而产生的。大气低层对于红外辐射不再是透明的,所以地球向外辐射就从更高的高度上发射,结果使得地球表面变得更暖。

温室效应加剧的原因

人类活动使温室气体含量增加

大气中的温室气体,主要有六种,包括:二氧化碳、一氧化二氟烃类物质。关于每种温室气体含量增加的原因,具体分析如下: (1)二氧化碳(CO2)。在对大气释放CO2方面,最重要的人类活动是交通、电力等部门对化石燃料的消耗,全球每年因此接受到的碳量19世纪中期为1亿吨左右,到本世纪80年代已达57亿吨。CO2增加的另一个原因是地球陆地植物系统的破坏,近几十年来,森林的砍伐和破坏日益严重,导致大气中CO2浓度增加。

(2)一氧化二氮(N2O)。海洋是一氧化二氮的一个重要来源。无机氮肥的大量使用和石化燃料及生物体的燃烧也能释放出一定量的一氧化二氮。工业革命前一氧化二氮的浓度为288cm3·m-3,目前已增加到310cm3·m-3。据以往的观测结果进行推断,大气中一氧化二氮的年增加率仍将保持在左右。

(3)甲烷最重要的来源是沼泽、稻田和反刍动物,这三项占总排放量的60%左右。天然气、煤的采掘和有机废弃物的燃烧等人类活动也产生甲烷。

(4)臭氧(O3) 臭氧在大气层的上部浓度最高,并且形成我们所熟悉的臭氧层,其可以吸收大气中过量的紫外辐射,使生物的免疫系统免受损害。然而,近年来,在大气层的下部,一定数量的人造物质聚集起来,生成了低空臭氧,并且还在不断生成。

(5)氯氟烃(CFCS)氯氟烃完全是人工合成物质,因其无毒、有惰性,而被广泛应用于灭火剂、制冷剂等化工产品的制造。从上个世纪来,人工合成的卤素碳化物不断大量排入大气,使其在大气中的浓度迅速上升, 它们不仅浓度高,保留时间也很长,因而其对环境的影响也是长期的。

人类活动导致温室气体被吸收量的减少

大气中任何气体的含量,都是由其排放量与被吸收量之间的平衡来决定的。但是,人类活动破坏了这种平衡,导致温室气体含量增加。如对CO2气体,自然界主要是通过植物的光合作用进行吸收的。而人类对森林的大规模砍伐,却降低了自然界对CO2的吸收能力,破坏了CO2的排放量与被吸收量之间的平衡,导致CO2大气含量增加。

温室效应带来的后果

自然灾害

温室效应加速,地球升温,大气恶化,必然气候带迁移,冰川消融,海面上涨,自然灾害频频发生。一系列变化,人类和地球面临严峻的威胁。温室效应带来的自然灾害现总结为以下几点:

(一)海平面上升今后50或1内,全球温度升高几摄氏度,海洋发生膨胀,山地冰川融化,和格林兰冰原南缘可能后退,海平面会升高一米。海平面升高,严重危及沿海地区的居住条件和生态系统。

(二) 飓风和大风暴频繁 海洋升温,使其逐渐增多的水蒸气在大气中产生更强烈的对流,其结果咫风和大风暴更为频繁。已知太平洋周围易受台风袭击的地区在过去间大约增加了1/6。

(三)干旱地区增加 地球升温加速水份蒸发而减少河流流量,也就是说大气中水蒸气增多,意味着某些地区干早概率增加,预计2030年,低纬地区酷暑季节干早的概率增加到每3年一次,而50年代仅20年一次。

(四)地震 环境因子太阳活动和气象与地震之间存在某些联系,对地震的发生常常起有调制和触发的作用。温度效应的加速,地温升高大气变化,以及太阳表面剧烈活动释放的能量,无疑影响到地震发生的频度和强度。

对生态的影响

有人曾经说过,环境的污染和生态的破坏比战争给人类带来的威胁更大,而由温室效应引起的地球表面温度上升正在破坏着地球上的生态平衡,这主要表现在植物、动物和昆虫出现迁移现象,以适应气候变化;一些动植物因不适应环境而被毁灭,严重的影响着生物多样性。另外,一些农作物的产量由于气温上升而下降,甚至无收;沙漠地区由此不断扩大;森林面积不断减小;干旱连年发生。这种生态平衡的破坏对人类社会的发展势必产生不良影响。

促进疾病的蔓延

温室效应造成的气温升高和臭氧层变薄而引起的紫外线辐射加强会使某些疾病蔓延,同时也会损害人体自身对疾病的预防能力。紫外线的辐射不仅会导致癌症,而且还会改变或消除免疫系统,加剧了一些与皮肤有关的疾病的产生,如麻疯病、天花、皮肤溃疡和疱疹等。例如,由于气温升高,在南美洲和中美洲由吸血蝙蝠传染的狂犬病、登莱热和黄热病有可能传播到北美洲。例外据证实,臭氧层的臭氧量减少1%,放射到地面的紫外线则增多2%,皮肤癌的发病率相应增多4%—6%,过量的紫外线还可以加速艾滋病的发病率,甚至引起天然电磁场的变化,影响人类的整个健康。

温室效应的应对策略

温室效应已引起全世界的密切关注并就此展开了热烈讨论。近年来各有关专家已相继展开了一系列的地区性和国际性会议,共同商讨具体措施和对策。现总结如下:

(1)减少CO2的排放量 此是最有生命力的预防,能措施、替代能源(太阳能如光电池、生物质能),或从煤、石油改为天然气和其他含碳量低的然料,停止焚烧和砍伐森林并大面植树造林。提出并制定“空气法”,即向每个国家规定污染权,使二氧化碳等的排放量保持在一个全球标准之下。

(2)改变交通工具,完善机动车辆 汽车尾气是大气中CO2的主要来源,因而改变交通工具由机械代替机动对控制温室效应将起重大作用;另外加速研究新的装置安装在各种机动车辆上来吸收、净化其所排放的废气也是控制温室效应的重要措施。

(3)限制氯氟烃的生产,研制新的制冷剂,代替传统的气雾剂,是缓解温室效应的途径之一。 另外,面对着如此严重的挑战,仅仅是某一个个人或国家的努力是不可能取得成功的,它需要我们全世界全人类的共同努力,通力合作。温室效应和臭氧层的破坏是全球性的“灾难”,因此,各国有关的专家、学者应通力合作,共同研究,并制定出科学的方法,缓解现存问题,控制未来新的温室效应的再形成。 (4)保护森林的对策方案

今日以热带雨林为生的全球森林,正在遭到人为持续不断的急剧破坏。有效的因应对策,便是赶快停止这种毫无节制的森林破坏,另一方面实施大规模的造林工作,努力促进森林再生。目前由於森林破坏而被释放到大气中的二氧化碳,根据估计每年约在1~2gt.碳量左右。倘若各国认真推动节制砍伐与森林再生计划,到了二○五○年,可能会使整个生物圈每年吸收相当於.碳量的二氧化碳。具结果得以降低七%左右的温室效应。

(5)改善其他各种场合的能源使用效率 是要改善其他各种场合的能源使用效率。今日人类生活,到处都在大量使用能源,其中尤以住宅和办公室的冷暖气设备为最。因此,对於提升能源使用效率方面,仍然具有大幅改善余地,这对二○五○年为止的地球温暖化,预计可以达到八%左右的抑制效果。

(6)鼓励使用天然瓦斯作为当前的主要能源 因为天然瓦斯较少排放二氧化碳。最近日本都市也都普遍改用天然瓦斯取代液化瓦斯,此案则是希望更进一步推广这种运动。惟其抑制温暖化的效果并不太大,顶多只有一%的程度左右。 (7)鼓励使用太阳能

譬如推动所谓「阳光计划」之类。这方面的努力能使化石燃料用量相对减少,因此对於降低温室效应具备直接效果。不过,就算积极推动此项方案,对於二○五○年为止的温暖化,只具四%左右的抑制效果。其效果似乎未如人们的期待。

(8)开发替代能源

利用生物能源(Biomass Energy)作为新的乾净能源。亦即利用植物经由光合作用制造出来的有机物充当燃料,藉以取代石油等既有的高污染性能源。 燃烧生物能源也会产生二氧化碳,这点固然是和化石燃料相同,不过生物能源系从大自然中不断吸取二氧化碳作为原料,故可成为重覆循环的再生能源,达到抑制二氧化碳浓度增长的效果。

伴随着人类社会文明进步而来的温室效应已在无声无息地危及着人类的生存环境,因此加速对其形成原因及后果的研究对实施合理的对策来缓和清除由此而产生的后果具有重要的实际意义。控制温室气体排放,保护大气环境,不仅与我国经济可持续发展的战略目标是一致,同时也是全世界人民的共同愿望。我们每个人的手里都紧握着珍贵的资源、能源,掌握着一份民族生息发展的“命脉”。 已有52位诺贝尔奖获得者和700多名美_威科学家签名上书政府,力促联合各国通力合作,采取对策,以“稳定”全球的气候,“遏住”地球的危机。成之毁之、爱损之在于我们的一举一动。为了我们的今天更为了我们后代的明天,为了地球的长久,全世界人民更应该团结起来,共同应对日益严重的温室效应。

参考文献:

[1] 田景春.浅谈温室效应.岩相古地理.,15(5):54-58. [2] 王文香.温室效应对生物多样性的影响及对策.中国民营科技与经济.,11:95-96. [3] 张 峥, 张 涛,郭海涛.温室效应及其生态影响综述.环境保护科学.,99(26):36-38. [4] 阎志德.浅论温室效应及其灾害和对策.甘肃科学学报.1991,3(3):85-89. [5] 孙玉清,张永波,陈熙.浅析温室效应加剧的原因、后果及对策. 苏州城建环保学院学报.,12(4):55-58. [6] 余国泰.温室效应及其生态影响. 环境化学.1990,9(5):71-78. [7] 陈中元.逐渐增大的温室效应危险及其对策的研究.云南化工.,32(6):53-56.

传热学知识点总结 第6篇

传热学知识点总结

第一章

§1-1 “三个W”

§1-2 热量传递的三种基本方式

§1-3 传热过程和传热系数

要求:通过本章的学习,读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解,并能进行简单的计算,能对工程实际中简单的传热问题进行分析(有哪些热量传递方式和环节)。作为绪论,本章对全书的主要内容作了初步概括但没有深化,具体更深入的讨论在随后的章节中体现。

本章重点:

1.传热学研究的基本问题

物体内部温度分布的计算方法

热量的传递速率

增强或削弱热传递速率的方法

2.热量传递的三种基本方式

(1).导热:依靠微观粒子的热运动而产生的热量传递。传热学重点研究的是在宏观温差作用下所发生的热量传递。

傅立叶导热公式:

(2).对流换热:当流体流过物体表面时所发生的热量传递过程。

牛顿冷却公式:

(3).辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力,辐射换热就是这两个过程共同作用的结果。由于电磁波只能直线传播,所以只有两个物体相互看得见的部分才能发生辐射换热。

黑体热辐射公式:

实际物体热辐射:

3.传热过程及传热系数:热量从固壁一侧的流体通过固壁传向另一侧流体的过程。

最简单的传热过程由三个环节串联组成。

4.传热学研究的基础

傅立叶定律

能量守恒定律+ 牛顿冷却公式 + 质量动量守恒定律

四次方定律

本章难点

1.对三种传热形式关系的理解

各种方式热量传递的机理不同,但却可以(串联或并联)同时存在于一个传热现象中。

2.热阻概念的理解

严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式的损耗。 思考题:

1.冬天经太阳晒过的棉被盖起来很暖和,经过拍打以后,效果更加明显。为什么?

2.试分析室内暖气片的散热过程。

3.冬天住在新建的居民楼比住旧楼房感觉更冷。试用传热学观点解释原因。

4.从教材表1-1给出的几种h数值,你可以得到什么结论?

5.夏天,有两个完全相同的液氮贮存容器放在一起,一个表面已结霜,另一个则没有。请问哪个容器的隔热性能更好,为什么

第二章 导热基本定律及稳态导热

§2-1 导热的基本概念和定律

§2-2 导热微分方程

§2-3 一维稳态导热

§2-4伸展体的一维稳态导热

要求:本章应着重掌握Fourier定律及其应用,影响导热系数的因素及导热问题的数学描写——导热微分方程及定解条件。在此基础上,能对几种典型几何形状物体的一维稳态导热问题用分析方法确定物体内的温度分布和通过物体的导热量。

本章重点:

1.基本概念

温度场 t=f(x,y,z,τ),稳态与非稳态,一维与二维

导热系数λ

2.导热基本定律:

可以认为是由傅立叶导热公式引深而得到,并具有更广泛的适应性。

(1) 可以应用于三维温度场中任何一个指定的方向

(2) 不要求物体的导热系数必须是常数

(3) 不要求沿x方向的导热量处处相等

(4) 不要求沿x方向的温度梯度处处相等

(5) 不要求是稳态导热

3.导热微分方程式及定解条件

1)导热微分方程式控制了物体内部的温度分布规律,故亦称为温度控制方程只适用于物体的内部,不适用于物体的表面或边界。受到坐标系形式的限制。其推导依据是能量守恒定律和傅立叶定律。

2)定解条件

定解条件包括初始条件和边界条件。

第一类边界条件给定边界上的温度值

第二类边界条件给定边界上的热流密度值

第三类边界条件给定边界对流换热条件

3)求解思路

求解导热问题的思路主要遵循“物理问题数学描写求解方程温度分布热量计算”

4.一维稳态导热问题的解析解

1)如何判断问题是否一维

2)两种求解方法

对具体一维稳态无内热源常物性导热问题,一般有两种求解方法:一是直接对导热微分方程从数学上求解,二是利用fourier定律直接积分。前者只能得出温度分布再应用fourier定律获得热流量。

3)温度分布曲线的绘制

对一维稳态无内热源导热问题,当沿热流方向有面积或导热系数的变化时, 依此很容易判断温度分布。

本章难点:

本章难点是对傅立叶导热定律的深入理解并结合能量守恒定律灵活应用,这是研究及解决所有热传导问题的基础。

思考题:

1.如图所示为一维稳态导热的两层平壁内温度分布,导热系数λ均为常数。试确定:

(1)q1,q2及q3的相对大小;(2) λ1和λ2的相对大小。

2.一球形贮罐内有-196 的液氦,外直径为2m,外包保温层厚30cm, 其λ= 。环境温度高达40,罐外空气与保温层间的h=5w/试计算通过保温层的热损失并判断保温层外是否结霜。

3.试推导变截面伸展体的导热微分方程,并写出其边界条件。假设伸展体内导热是一维的。

第三章 非稳态导热

§3-1非稳态导热的基本概念

§3-1集总参数法

§3-3非稳态导热过程的微分方程分析

要求:通过本章的学习,读者应熟练掌握非稳态导热的基本特点,集总参数法的基本原理及其应用,一维非稳态导热问题的分析解及海斯勒图的使用方法。读者应能分析简化实际物理问题并建立其数学描写,然后求解得出其瞬时温度分布并计算在一段时间间隔内物体所传递的导热量。

本章重点;

一.非稳态导热过程

1.实质:由于某种原因使物体内某点不断有净热量吸收或放出,形成了非稳态温度场。

2.一维非稳态导热的三种情形:见教材图3-3。

数的物理意义

二.集总参数法

1.实质:是当导热体内部热阻 忽略不计即Bi0时研究非稳态导热的一种方法。判别依据:Bi<。

2.时间常数

3.几点说明:导热体外的换热条件不局限于对流换热。建立导热微分方程的根本依据是能量守恒定律;由Bi数的定义,若h或特征长度d未知时,事先无法知道Bi数的大小,此时先假设集总参数法条件成立,待求出h或d之后,进行校核。

三.一维非稳态导热分析解

1.前提:一维、无内热源、常物性,Bi 或有限大。

2.非稳态导热的正规状况阶段:当Fo>以后,非稳态导热进入正规状况阶段。此时从数学上表现为解的无穷级数只需取第一项,从物理上表现为初始条件影响消失,只剩下边界条件和几何因素的影响。

本章难点:

1.对傅立叶数Fo和毕渥数Bi物理含义的理解。

2.集总参数法和一维非稳态导热问题分析解的定量计算。

思考题:

1.两个侧面积和厚度都相同的大平板, 也一样,但导温系数a不同。如将它们置于同一炉膛中加热,哪一个先达到炉膛温度?

2.两块厚度为30mm的无限大平板,初始温度20℃,分别用铜和钢制成,平板两侧表面温度突然上升到60℃,试计算使两板中心温度均上升到56℃时,两板所需时间比。已知a铜=103,a钢=(10-6m2/s)。

3.某同学拟用集总参数法求解一维长圆柱的非稳态导热问题,他算出了Fo和Bi数,结果发现Bi不满足集总参数法的条件,于是他改用Fo和Bi数查海斯勒图,你认为他的结果对吗,为什么?

4.在教材图3-6中,当 越小时, 越小,此时其他参数不变时 越小。即表明 越小,平板中心温度越接近流体温度。这说明 越小时物体被加热反而温升越快,与事实不符,请指出上述分析错误在什么地方。

5.用热电偶测量气罐中气体的温度,热电偶初始温度20℃,与气体表面h=10w/,热电偶近似为球形,直径。试计算插入10s后,热电偶的过余温度为初始过余温度的百分之几?要使温度计过余温度不大于初始过余温度的1%,至少需要多长时间?已知热电偶焊锡丝的 =67w/, ρ=7310kg/m3,c=228J/。

第四章 对流换热

§5-1 对流换热概说

§5-2 对流换热的数学描写

§5-3 对流换热边界层微分方程组

§5-4 相似理论基础

§5-5 管内受迫流动

§5-6 横向外掠圆管的对流换热

§5-7 自然对流换热及实验关联式

要求;通过本章的学习,读者应从定性上熟练掌握对流换热的机理及其影响因素,边界层概念及其应用,以及在相似理论指导下的实验研究方法,进一步提出针对具体换热过程的强化传热措施。本章主要从定量上计算无相变流体的对流换热,读者应能正确选择实验关联式计算几种典型的无相变换热(管槽内强制对流,外掠平板、单管及管束强制对流,大空间自然对流)的表面传热系数及换热量。

本章重点:

一.对流换热及其影响因素

对流换热是流体掠过与之有温差的壁面时发生的热量传递。导热和对流同时起作用。表面传热系数h是过程量。

研究对流换热的目的从定性上讲是揭示对流换热机理并针对具体问题提出强化换热措施,从定量上讲是能计算不同形式的.对流换热问题的h及Q。

对流换热的影响因素总的来说包括流体的流动起因、流动状态、换热面几何因素、相变及流体热物性等。亦说明h是一复杂的过程量,Newton冷却公式仅仅是其定义式。

二.牛顿冷却公式

三.分析法求解对流换热问题的实质

分析法求解对流换热问题的关键是获得正确的流体内温度分布,然后利用式5-3求出h,进而得到平均表面传热系数。

四.边界层概念及其应用

速度和温度边界层的特点及二者的区别。温度边界层内流体温度变化剧烈,是对流换热的主要热阻所在。

数量级对比是推导边界层微分方程组常用的方法。基于:

五.相似原理

对流换热的主要研究方法是在相似理论指导下的实验方法。学习相似理论,应充分理解并掌握三个要点:如何安排实验(应测的量);实验数据和整理方法;所得实验关联式推广应用的条件。

准则数一般表现为相同量纲物理量或物理量组合的比值,在具体问题中表示的并不是其比值的真正大小,而是该比值的变化趋势。

传热与流动中常见的准则数Re、Pr、Nu、Gr、Bi、Fo,其定义和物理意义是应该熟练掌握的。

六.无相变对流换热的定量计算

注意:

判断问题的性质

选择正确的实验关联式

三大特征量的选取:、、

牛顿冷却公式对不同的换热,温差和换热面积有区别

实际问题中常常需要使用迭代方法求解,计算结束时应校核前提条件是否满足。(或则,需先假定流态,最后再校核)

对流换热常常与辐射换热同时起作用,尤其在有气体参与的场合。

本章难点:

对流换热机理和过程的理解

相似原理和相似准则数意义的理解

定量计算

思考题;

1.管内强制对流换热,为何采用短管或弯管可以强化流体换热?

2.其它条件相同时,同一根管子横向冲刷与纵向冲刷比,哪个的h大,为什么?

3.在地球表面某实验室内设计的自然对流换热实验,到太空中是否仍有效?为什么?

4.由 式中没有出现流速,h与流体速度场无关,这样说对吗?

5.一般情况下粘度大的流体其Pr也大。由 可知,Pr越大,Nu也越大,从而h也越大,即粘度大的流体其h也越高,这与经验结论相悖,为什么?

传热学知识点总结 第7篇

数值传热学答案

习题程序

clear

%******************三对角阵算法(TDMA算法)********************** %************《数值传热学》P100,一般情况的Thomas算法************* %定义A B C T变量

m1=10;%定义10个节点

x=linspace(1,3,m1);%生成 A、C、B、T 数据的初值;

A=cos(x);%TDMA 的`主对角元素

B=cos(x)+exp(x);%TDMA 的下对角线元素

C=sin(x); %TDMA 的上对角线元素

第一文库网T=exp(x).*cos(x); %温度数据

%求解方程的通式AiTi=CiTi+1+BiTi-1+Di

C(1)=0;

B(10)=0;

D(1)=A(1)*T(1)-B(1)*T(2);

D(10)=A(10)*T(10)-C(10)*T(9);

for i=2:9

D(i)=A(i)*T(i)-B(i)*T(i+1)-C(i)*T(i-1);

end

%递归算法的系数通项公式

P(1)=B(1)/A(1);

Q(1)=D(1)/A(1);

for i=2:10

P(i)=B(i)/(A(i)-C(i)*P(i-1));

Q(i)=(D(i)+C(i)*Q(i-1))/(A(i)-C(i)*P(i-1));

end

T(10)=Q(10);

for i=9:-1:1

T(i)=P(i)*T(i+1)+Q(i);

end

%输出Ti的值

fprintf('T(i)的值是:%f',T(i))

%绘图比较给定 T 值和计算 T 值

plot(T,'r*')

hold on

T=exp(x).*cos(x)

plot(T)

title('给定的T值和计算T值得比较')

运行结果:

>>T(i)的值是:

T = Columns 1 through 9

Column 10

传热学知识点总结 第8篇

目前,国内外高等学校都对该类课程给予了高度重视。传热学课程已经成为能源动力类、机械类与建工类等院系重要的平台课。传热学课程中除了介绍国内外成熟的定论以外,还要大量介绍国内外最新的有关研究成果。通过各环节的教学,应使学生获得热量传递规律的基础知识,具备分析工程传热问题的基本能力,掌握计算工程传热问题的基本方法及一定的实验技能,不仅为学生学习有关的专业课提供基本的理论知识,而且也为以后从事热能的合理利用、热工设备效能的提高及换热器的设计等方面的工作打下必要的基础。

1 传热学课程的特点

“传热学”课程从热量传递的三种基本方式入手,主要介绍热量传递的基本规律,为学习后续“供热工程”、“空气调节”、“制冷原理及设备”、“热源设备”、“热泵技术”和“建筑节能技术”等课程提供必要的理论基础。“传热学”作为学科基础理论课,其牵扯的概念颇多,理论性很强。其中一些新的理论和新的概念对学生来说不易理解和掌握,增加了课程学习的难度。该课程(能源与环境系统工程专业)的知识模块顺序及对应的学时如下:热能传递基本方式及传热过程,4学时;导热基本定律,2学时;一维和多维稳态导热求解,2学时;非稳态导热,4学时;导热问题的数值解法,4学时;对流传热的理论基础,4学时;单相对流传热的实验关联式,4学时;相变对流传热,4学时;热辐射基本定律及物体的辐射特性,4学时;辐射换热的计算,4学时;传热过程分析与换热器热计算,4学时。

2 “传热学”教学中存在的问题

在教学过程中,学生普遍会反映“传热学”学习难度大。根据调查笔者认为难学的原因主要有以下几点:

(1)传热学本身内容涉及到的高等数学基础知识深而广,而且对传热的研究历史较长,前人总结了大量的概念、公式。例如在传热学的理论推导中经常用到微积分、泰勒展开、偏微分方程组的求解方法等。而且刚接触传热学的低年级学生在与高年级学生的交流中就会得到类似传热学特别难的印象,增加了畏难情绪。同时传热学内容分散,各主要部分相对独立。由于课时安排和教学大纲的限制,以学生为主体的研究性学习内容较少,以锻炼学生工程实践能力为目的的实验教学内容较少,使得学生缺乏分析和解决实际问题的能力。

(2)在对流传热内容的学习过程中,由于其牵扯到流体力学的纳维斯托克斯方程,而N-S方程本身就是流体力学学习的难点,所以大大增加了对流传热的复杂性。特别是关于湍流流态的对流传热和相变对流传热,目前还不能从理论上推导出实际情况下的努赛尔数计算公式,大部分都是使用经验关联式的状态。学生会感到难以理解。

(3)在传统的单向灌输式教学中,教师与学生之间的互动较少,很难激发学生的学习兴趣和独立分析解决问题的意愿。同时部分学生学习态度不够好,怕吃苦不努力,对新的课程未作预习,课后也没有独立完成作业和复习。学生对传热学的基本原理未能深刻理解,而是停留在机械记忆的层面上。

(4)期终考试采用传统的闭卷考核方法不够合理。为了应对考试,学生复习时认真推导公式,多做习题,但传热学这门课程的概念多、方程多、经验公式多,学生无法全部背出。对考试的命题范围有很大的限制。同时也不利于培养学生的独立思考能力,更无法对学生是否达到卓越工程师的要求进行考查。

3 教学方法的探讨

调动学生学习的积极性

兴趣是最好的老师,如果学生缺乏学习的兴趣,必将只能为了应付考试而机械记忆,更不可能做到运用学习的知识来解决实际中的问题。而调动学生的积极性,要从第一节课始,到最后一节课终。在一开始给学生介绍传热学这门课程时,可以通过图片展示传热学知识在传统工业、高新技术、节能环保和日常生活中的应用。在授课过程中,将授课内容与日常生活中的现象以及在建筑、冶金、化工、航天等行业的广泛应用结合起来。比如在讲授临界热绝缘直径内容时,先以生活中的现象为例,提问是不是冬天带上手套就一定能起到保暖的作用。再引申到在工业管道外部附加保温层是否就一定能达到保温的效果。学生通常都会想当然地认为是。这时以电线散热等实例说明附加保温层后散热量并不一定减少,甚至有时会起到增强散热的效果,这会大大激发学生的好奇心和探求原因的欲望。在明白了机理后,学生会深刻地理解和记忆能否保温还得看绝热层外径的大小,当绝热层外径小于临界热绝缘直径时起不到保温的作用,相反可以增强换热。再如对于能源与环境系统工程专业来说,空调系统中最重要的两个部件是蒸发器和冷凝器,都为相变对流换热器。其中蒸发器中制冷工质沸腾吸热,冷凝器中制冷工质凝结放热。其换热的机理都来自教材中相变对流传热章节。在该章节讲述之前,可以从学生们日常中经常接触的空调系统为引入点,提起学生的学习兴趣。这样能够激发学生的学习主动性与积极性,加深他们对知识的理解和掌握程度,增强他们分析问题和解决问题的能力,有利于他们学习能力的提高和创造性思维的培养。 优化组合教学方法和手段

教学方法是多种多样的,如发现式、启发式、提问式和讨论式等。不同课程采用的教学方法不同,即使是同一节课,也往往需要采用多种教学方法。同时在教学过程中采用现代化的电子技术和信息手段,包括光学媒体、音响媒体、计算机教学系统和各种教学软件的应用。这样可以使课堂教学包含更大的信息量,同时对实践教学的不足给予一定的补充。但要避免出现杨叔子院士列举的多媒体教学中多种错误形式和问题,如 :“照屏宣科”、“人幕分离”、“对屏讲解”、“快速浏览”等。更不能将PPT变成“骗骗他”。

教学内容和实际实践相联系

在教材的选择上,本课程选用杨世铭、陶文铨所编的高等教育出版社的《传热学》(第四版),该书在内容上由浅入深,循序渐进,在介绍基础知识的同时,也积极反映了传热学发展的前沿知识,如纳米传热学的基本知识等。该教材包含典型的例题与习题,对较为复杂的实际问题进行了详尽的分析,十分接近工程实际。但随着传热技术的发展和其他学科之间的交叉程度大大提高,许多新的研究手段得以出现。传热技术的工程应用领域进一步扩大,也因此使得传热学的内涵得以丰富。随着能源学科和相关行业的发展,需要不断更新教学内容,使学生接收到最新的知识内容。因此在教学内容的选择上,适当删减了一些比较繁琐的数学推导内容,如非稳态导热中一维无限大平板分析解的推导过程。此外也增加了一些传热技术新发展的内容,如微尺度的传热等内容。同时在教学中要注重培养学生的工程观点以及工程实践能力。工科院校的教学必须注重学生工程实践意识的培养和工程设计能力的训练。

改进实验教学

传热学的实践性很强,像一些复杂的传热问题的规律都是通过实验总结提出。当前,我校传热学的实验教学上对学生的实践创新能力的锻炼还有所欠缺,比如课时安排较少,实验教学内容不够丰富,大部分内容依然是基于课堂所讲知识而进行的验证性实验。再如实验教学设备和仪器数量不多,往往多人一机,不少想体验实验过程提高动手能力的学生未能得偿所愿。因此,对于传热学教学十分重要的实验教学需要加以改进,除了巩固课堂授课的内容以外,还应该注意培养学生的实际动手能力、综合设计能力和总结归纳能力。传热学的课内实验可不仅仅局限于验证性实验,同时应增加开放性、综合性的实验内容。以期提高学生的综合分析能力和解决问题的能力。

改进考核模式,注重考查学生能力

针对闭卷考核方式的不足,同时避免开卷考试带来学生的惰性和依赖性,我们尝试在考核成绩的最终评定时,采用平时成绩加考试成绩的形式。平时的课堂表现、互动参与情况、作业占总成绩的30%,考试成绩占总成绩的70%。提高课堂互动讨论中的表现占平时成绩的比重,以促进学生的参与度。同时对试卷的命题范围可以尝试参考大学英语四、六级考试,即将试卷分为A、B两部分。其中A部分主要考核学生对基本概念、基本方程、基本原理的掌握情况,采用闭卷的方式要求学生在一定的时间内完成并上交;B部分主要考核学生应用传热规律解决实际问题的能力,主要是实验关联式的应用,采用开卷形式。

4 结语

如今的大学正处于一个快速变革和飞速发展的时期,在发展变化中搞好教学仍然是教师们的主要任务。传热学作为能源与环境系统工程专业重要的学科基础理论课程,其教学效果十分重要。在课堂教学仍然是培养大学生的主要途径的前提下,我们应激发学生的学习兴趣,以培养学生分析问题、解决问题的实际能力为主导思想,探索有效的教学方式和方法,提高教学质量和效率,顺利实现教学目标,使学生取得更好的学习效果。

传热学知识点总结 第9篇

专 业:制冷及低温工程

课程名称:工程热力学与传热学

说明:答案标明题号写在答题纸上,写在试题纸上的无效。

工程热力学部分

一、简答题:(每题6分,共30分)

1. 两股湿空气稳定绝热合流,湿空气的参数分别为:ma1、p1、t1、h1、s1、c1;ma2、p2、t2、h2、s2、c2,合流后的参数用角标3表示。试写出质量方程、能量方程和熵方程。

2. 试用焦耳--汤姆逊系数,分析理想气体和制冷剂,在绝热节流后产生的温度效应。

3. 试根据热力学第二定律证明p-v图上可逆绝热过程线不相交。

4. 门窗紧闭的房间内有一台电冰箱正在运行,若敞开冰箱大门就有一股凉气扑面,使人感到凉爽。你认为能否通过敞开冰箱大门的方式降低室内温度?

5.已知湿空气的温度、压力以及水蒸气分压力,判断湿空气是否饱和?什么条件下才结露?其含湿量如何?

二、计算题(每题15分,共45分)

1.有一可逆热机,如图所示,自高温热源t1吸热,向低温热源t2和t3放热。已知:t1=727℃,t3=127℃,Q1=1000kJ,Q2=300kJ,W=500kJ, 求:

(1)Q3=?

(2)可逆热机的热效率?

(3)热源温度t2=?

(4)三热源和热机的熵变?

(5)在T-S图上表示热机循环。

2.空气压缩制冷装置,吸入的空气p1=, t1=27°C,绝热压缩到

p2=,温度为-10°C,空气进入膨胀机的温度为20°C,

试求: (1) 压缩机出口压力; (2) 制冷机的质量流量;

(3) 压缩机的功率; (4) 循环净功率。

3. 已知范德瓦尔方程 ,求:1mol气体由初态v1可逆地定温膨

胀到终态v2,所吸收的热量。

传热学部分

一、问答题(每题6分,共30分)

1.试说明得出导热微分方程所依据的基本定律。

2.一大平壁两侧表面温度分别为T1和T2,且T1>T2,其导热系数λ与温度T呈线性变化:λ=λ0+AT,式中λ0为正值常数。试画出对应于A>0、A=0和A<0三种情况下一维平壁稳态导热时的温度分布曲线,并说明理由。 么叫珠状凝结?膜状凝结时热量传递过程的主要阻力在什么地方?

4.写出Pr数的表达式并说明其物理意义;Pr=1时流动边界层厚度与温度边界层厚度相等的结论适用于何种场合?

5.什么是有效辐射?若黑体的辐射力为Eb、投入辐射为G,试问黑体的有效辐射J为多少?

二、计算题(每题15分,共45分)

1. 有一厚为20mm的大平壁,导热系数为(m・K)。为使每平方米壁面的热损失不超过1500W,在外表面上覆盖了一层导热系数为(m・K)的保温材料。已知复合壁两侧温度分别为700℃及50℃,试确定此时保温层的厚度。

共3页 第3页

2.一常物性、不可压缩的流体同时流过内径分别为d1与d2的两根直管而被加热,且d1=2d2。流动与换热均已处于湍流充分发展区域,对流换热的实验关联式为Nu=。试确定在下列两种情况下两管内平均表面传热系数的相对大小:

(1)流体以同样的流速流过两管;

(2)流体以同样的质量流量流过两管。

3. 三个表面构成一个封闭系统,其中表面1、2为黑体,且都为平面;表面3为绝热面。假定两个黑体表面的面积相等,即A1=A2,温度分别为T1与T2,试画出该辐射换热系统的网络图,并导出表面3(绝热面)的温度T3的表达式。

3.什么叫膜状凝结?什

传热学知识点总结 第10篇

人的一生就只有一次生命,我们应该爱惜生命。注意交通安全也是爱惜生命的一部分。交通安全知识点总结最新有哪些你知道吗?共同阅读交通安全知识点总结最新,请您阅读!

交通安全知识点总结

1、行走安全:行人须在人行道内行走,没有人行道靠右边行走;

穿越马路须走人行横道;通过有效通信号控制的人行道,须遵守信号的规定;通过没有交通信号控制的人行道,要左顾右盼,注意来往车辆,不准追逐,奔跑;没有行人横道的,须直行通过,不准在车辆临近时突然横穿;有人行过街天桥或地道的,须走人行过街天桥或地道;不准爬越马路边和路中的护栏、隔离栏,不准在道路上扒车、追车、强行拦车或抛物击车。

2、骑自行车(电动车、摩托车)安全:不满16周岁不能在道路上骑电动车、摩托车;

不打伞骑车;不脱手骑车;不骑车带人;不骑“病”车;不骑快车;不与机动车抢道;不平行骑车;不在恶劣天气骑车。

3、乘车安全:乘公共汽车要停稳后上下车,在车上要抓好扶手,头、手等身体部位不能伸出窗外,管好身边物品,防止扒窃;

乘高速汽车要系安全带;不乘超载车。小学生交通安全知识

1、汽车不是一刹车就停的

有的学生认为乱过马路没有什么关系,反正驾驶员会刹车的。

其实,汽车不是一刹就停的。由于惯性作用,刹车后车还会向前滑一段路,这就是力的惯性作用。就像人在奔跑中,突然停下来,还会不由自主地身前冲几步一样。何况还有可能驾驶员不注意,刹车不灵等。所以,乱穿马路是十分危险的,不少交通事故就是因为行人乱过马路造成的。血的教训应当引以为戒。

2、安全走路

走路,谁不会呢?

其实不然,如果我们不注意交通安全,走路就会闯祸。

所以上学读书、放学回家、节假日外出时走在人来车往的交通繁忙的道路上,要遵守交通规则,增强自我保护意识。

走路要走人行道上。在没有人行道的地方,应靠道路右边行走。走路时,思想要集中,不要东张西望,不能一边走一边玩耍,不能一边走路一边看书,不能三五成群并行行走,不要乱过马路,更不要追赶车辆嬉戏打闹。更不要在马路上踢球、溜冰、放风筝、做游戏。一旦被来往车辆装倒,后果十分严重。

3、不在车前车后急穿马路

有人总是喜欢在汽车前、后急穿马路这是很危险的。驾驶员眼睛看不到的地方,被称为“视线死角”。要是有人在车前车后驾驶员眼睛看不到的“视线死角”内急穿马路,就会造成车祸。所以我们横过马路要注意左右来往车辆,先向左看,后向右看,当看清没有来车时才横过马路。在有“人行横到”和“人行天桥“上行走,这样才比较安全。

4、礼貌乘车

在等乘公共汽车时,应在站台上有次序地候车。要做到等车停稳后,让车上的人先下来,然后依次车。车辆行驶时,要坐好或站稳,并抓住扶手,防止紧急刹车时摔倒。不能将身体的任何部分伸出车外下来后,要注意安全,不要从车前车后突然穿出或猛跑过马路,以免发生伤亡事故。

安全行车十五想

出车之前想一想,检查车况要周详;马达一响想一想,集中精力别乱想;

起步之前想一想,观察清楚再前往;自行车前想一想,中速行驶莫着忙;

要过道口想一想,莫闯红灯勤了望;遇到障碍想一想,提前处理别惊慌;

转弯之前想一想,需防左右有车辆;会车之前想一想,先慢后停多礼让;

超车之前想一想,没有把握别勉强;倒车之前想一想,注意行人和路障;

夜间行车想一想,仪表车灯亮不亮;经过城镇想一想,减速鸣号切莫望;

雨雾天气想一想,防滑要把车速降;长途行车想一想,劳逸结合放心上;

停车之前想一想,选择地点要适当。

传热学知识点总结 第11篇

科学技术迅猛发展,知识更新的周期大大缩短,新学科、新领域的不断出现并很快转变为生产力。《传热学》是热能工程专业的一门主干课程,也是发展石油化工科技的支柱学科之一。长期以来,它围绕热传递现象的基本规律与工程计算,形成了一整套课程教学体系,在传授知识方面发挥了积极的作用。然而传热学虽然属于技术基础学科,但它不像流体力学和工程热力学那样系统严谨完备而偏于理论,而是一门发展中的实用性较强的工程学科。因此,对于传热学教学来说,应更注重培养学生理解传热现象的物理意义,教给学生解决实际问题的方法。下面我就按照《传热学》课程的顺序,谈谈在教学方面的切身体会。

一、绪论部分

这方面的教学内容除了介绍某些最主要的基本概念外,主要应该是加强内容的连贯性和系统性,使学生对学科结构和三种常见的传热方式建立起较完整的轮廓。这部分着重讲述两个问题:(l)传热的三种基本方式;(2)传热过程与传热系数。此外,向学生介绍一些参考书,培养他们的自学能力。为了激发学生的学习热情,我举了日常生活中经常碰到的两个例子:①为什么热水瓶中的水在相当长的时间内不会冷?②我们吃烫的食物时,舌头、嘴巴都有哪些习惯动作?这两个问题一个是常见的事物,另一个是学生的亲身体验。让学生带着这两个问题,我把传热的三种基本方式讲了一遍,并简要地介绍了热阻的概念。这样在课程一开始就吸引学生的兴趣,让他们带着问题进行下面的学习。

二、导热部分

由于现在的高等教育从“精英教育”向“大众教育”转变,学生的培养目标是以应用型的工程技术人员为主,所以除了推导导热微分方程外,更注重对一个具体问题微分方程的建立,边界条件从已知条件的抽象,以及对所得结果的物理意义的分析,在物理概念上多花功夫,使之对传热学的基本概念加深印象。对于稳态问题,一般采用导热微分方程(或傅立叶定理)加边界条件便可求解。热阻法在稳态求解中简便和直观,并且用类比法与电阻联系起来,使学生能理解一维稳态下热流处处相等(串连)。在教学方法上,采用由浅入深的教学方法。例如:在讲变导热系数的导热问题时,先讲定导热系数的求解方法,然后通过数学推导,得出只要求出变导热系数的平均值,可把变导热系数的问题转化为定导热系数问题的结论。在肋片导热的教学过程中,先讲装肋片的必要条件,然后建立数学模型,并给出精确解、近似解、修正解。让学生掌握对具体对象的数学建模,明白精确解和近似解之间的差别,懂得工程上对某些问题进行近似的合理性。这样处理,思路清楚,由简到繁,步步深入,加强了各内容之间的联系。对于非稳态问题,首先要向学生讲解什么是非稳态,它和稳态传热有什么区别?一般非稳态的问题都要查图表,学生只要认真做几道习题一般都能掌握图表的查阅方法。这部分的重点是集总参数法,用毕渥数来判断能否使用集总参数法,毕渥数的物理意义是表征内部导热热阻与外部对流热阻的比值,当然毕渥数要小到一定程度才能用集总参数法。这时物体内部的导热热阻远小于其表面的换热热阻,物体内部的温度趋于一致,以致可以认为整个物体在同一瞬间均处于同一温度下。这些物理意义既可以使学生更深刻理解计算公式的推导基础,也可以使学生灵洁运用所学公式解决工程计算问题,此外它更是学生对新问题进行简化分析的理论依据。

三、对流换热部分

影响对流换热的因素有五个方面:(1) 流体流动的因素;(2)流体有无相变;(3)流体的流动状态;(4)换热表面的几何因素;(5)流体的物理性质。在这一部分我们最关心的是对流换热系数,通过分析知道粘性流体在壁面上流动时,由于粘性的作用,在靠近壁面的地方流速逐渐减小,而在贴壁处流体将被滞止。贴壁处这一极薄的流体层相对于壁面是不流动的,壁面与流体间的热量传递必须穿过这个流体层,而热量传递方式只能是导热。因此将傅立叶定律应用于贴壁流体层,就把对流换热系数和流体的温度场联系起来。

为了求解有关未知数,需用质量守恒方程、动量守恒方程、能量守恒方程,这就使学生对对流换热系数的求解过程有总体的概念。对“对流换热的数学描写”、“层流边界层微分方程组”等内容,注重对建立方程的简化,假设条件的讲解,以及有关准则数物理意义的分析,即把时间花在重点和难点的讲解。这部分的实验关联式较多,主要讲解特征长度的选取,定性温度的选择,局部换热系数和平均换热系数的区别。对某一具体问题如何选择恰当的关联式以及在允许的误差范围内对同一问题用不同公式计算的合理性,培养学生工程应用能力。对于特征数方程和实验数据存在误差的问题,要引导学生用辨证和发展的眼光来看待,一个复杂的物理现象往往要经历长时间的探索,而目前的误差反映了现有的认识水平。

四、热辐射部分

我们把这部分的主要概念分成四组:(1)吸收率、反射率、透射率以及对应的黑体、镜体、透明体;(2)黑体辐射力、黑体单色辐射力及黑体辐射基本定律;(3)黑度、单色黑度及定向黑度;(4)投入辐射、光谱吸收比、灰体及基尔霍夫定律。每一组的概念存在数量关系和交叉关系。通过这种有意识地划类比较,更能清楚地揭示概念之间的内在联系,“信息”特征鲜明,从而有利提高学生的理解性、记忆力。角系数是这一部分的重点和难点,为了让学生理解角系数是与几何相对位置有关,我举了大量的例子,让学生在解题过程中灵活应用角系数的各项性质,加深理解。在多表面系统辐射换热的计算中,采用换热等效网络图,重点讲解了有一个表面为黑体和有一个表面绝热的区别,这样学生就明白为什么一个能采用并联热阻的求解法而另一个却不能的原因。

传热学是一门工程应用性很强的学科,需要考虑综合经济问题,像如何正确处理增强传热和流动阻力增大的矛盾。能量守恒是热传递现象所遵循的一个基本规律,《传热学》的形成、发展与它的运用息息相关。能否通过课程教学深刻理解热传递过程与能量守恒的关系,并基本掌握建立能量方程的方法与技巧,就成为提高学生解决问题能力的关键之一。随着计算机的迅速发展及应用的普及,热物理问题的数值模拟方法已越来越显示出其重要的作用,向学生介绍一些大型的商业计算软件,如:Fluent、ANSYS等,同时使学生了解传热学在现代生物医学、高新技术中的重要作用,这能够启发学生善于发现和解决工程问题,调动学生的学习积极性以及学习的创新热情,进一步巩固所学理论知识,提高工程实践能力和学习兴趣,培养应用型高级技术人才。

显示全文

注:本文部分文字与图片资源来自于网络,转载此文是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即后台留言通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意

点击下载文档

文档为doc格式

发表评论

评论列表(7人评论 , 39人围观)

点击下载
本文文档