高数之数列极限的方法总结 第1篇

《数列极限》优秀说课稿

一、关于教学目的的确定:

众所周知,对数列极限这个概念的理解可为今后高等数学的学习奠定基础,但由于学生对数列极限概念及其定义的数学语言表述的理解比较困难,这种理解上的困难将影响学生对后继知识的学习,因此,我从知识、能力、情感等方面确定了本次课的教学目标。

1.在知识上,使学生理解极限的概念,能初步利用极限定义确定某些简单的数列极限;

2.在能力上,培养学生观察、分析、概括的能力和在探索问题中的,由静态到动态、由有限到无限的辨证观点。体验“从具体到抽象,从特殊到一般再到特殊”的认识过程;

3.在情感上,通过介绍我国古代数学家刘徽的成就,激发学生的民族自尊心和爱国主义思想情感,并使他们对数列极限知识有一个形象化的了解。

二、关于教学过程的设计:

为了达到以上教学目的,根据北大附中教学传统把这次课连排两节。在具体教学中,根据“循序渐进原则”,我把这次课分为三个阶段:“概念探索阶段” ;“概念建立阶段” ;“概念巩固阶段”。下面我将对每一阶段教学中计划解决的主要问题和教学步骤作出说明。

(一) “概念探索阶段”

这一阶段要解决的主要问题在这一阶段的教学中,由于注意到学生在开始接触数列极限这个概念时,总是以静止的观点来理解这个描述变化过程的动态概念,总觉得与以前知识相比,接受起来有困难,似乎这个概念是突然产生的,甚至于不明概念所云,故我在这一阶段计划主要解决这样几个问题:

①使学生了解以研究函数值的变化趋势的观点研究无穷数列,从而发现数列极限的过程;

②使学生形成对数列极限的初步认识;

③使学生了解学习数列极限概念的'必要性。

2.本阶段教学安排我采取温故知新、推陈出新的教学过程,分三个步骤进行教学。

① 温故知新由于研究数列极限首先应对数列知识有一个清晰的了解,因此在具体教学中通过对教案中5个具体数列通项公式的思考让学生对数列通项公式这个概念产生回忆,指出以前研究数列都是研究的有限项的问题,现在开始研究无限项的问题。然后引导学生回忆数列是自变量为自然数的函数,通项公式就是以n为自变量的、定义域为自然数集的函数

高数之数列极限的方法总结 第2篇

求极限方法总结

为什么第一章如此重要? 各个章节本质上都是极限, 是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面

首先对极限的总结如下:

极限的保号性很重要 就是说在一定区间内 函数的正负与极限一致

1 极限分为 一般极限 , 还有个数列极限, (区别在于数列极限时发散的, 是一般极限的一种)

2解决极限的方法如下:(我能列出来的全部列出来了你还能有补充么???)

1 等价无穷小的转化, (只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者 (1+x)的a次方-1等价于Ax 等等 。 全部熟记

(x趋近无穷的时候还原成无穷小)

2落笔他 法则 (大题目有时候会有暗示 要你使用这个方法)

首先他的使用有严格的使用前提

必须是 X趋近而不是N趋近(所以面对数列极限时候先要转化成求x趋近情况下的极限, 当然n趋近是x趋近的一种情况而已,是必要条件

(还有一点 数列极限的'n当然是趋近于正无穷的 不可能是负无穷)

必须是 函数的导数要存在(假如告诉你g(x), 没告诉你是否可导, 直接用无疑于找死)

必须是 0比0 无穷大比无穷大

当然还要注意分母不能为0

落笔他 法则分为3中情况

1 0比0 无穷比无穷 时候 直接用

2 0乘以无穷 无穷减去无穷 ( 应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了

30的0次方 1的无穷次方 无穷的0次方

对于(指数幂数)方程 方法主要是取指数还取对数的方法, 这样就能把幂上的函数移下来了, 就是写成0与无穷的形式了 , ( 这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)

3泰勒公式 (含有e的x次方的时候 ,尤其是含有正余旋 的加减的时候要 特变注意 )E的x展开 sina 展开 cos 展开 ln1+x展开对题目简化有很好帮助

4面对无穷大比上无穷大形式的解决办法

取大头原则 最大项除分子分母看上去复杂处理很简单

5无穷小于有界函数的处理办法

面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数 可能只需要知道它的范围结果就出来了

6夹逼定理(主要对付的是数列极限)

这个主要是看见极限中的函数是方程相除的形式 ,放缩和扩大。

7等比等差数列公式应用(对付数列极限) (q绝对值符号要小于1)

8各项的拆分相加 (来消掉中间的大多数) (对付的还是数列极限)

可以使用待定系数法来拆分化简函数

9求左右求极限的方式(对付数列极限) 例如知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化

10 2 个重要极限的应用。 这两个很重要 对第一个而言是X趋近0时候的sinx与x比值 。 地2个就如果x趋近无穷大 无穷小都有对有对应的形式

(地2个实际上是 用于 函数是1的无穷的形式 )(当底数是1 的时候要特别注意可能是用地2 个重要极限)

11 还有个方法 ,非常方便的方法

就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的x的x次方 快于 x 快于 指数函数 快于 幂数函数 快于 对数函数 (画图也能看出速率的快慢)当x趋近无穷的时候 他们的比值的极限一眼就能看出来了

12 换元法 是一种技巧,不会对模一道题目而言就只需要换元, 但是换元会夹杂其中

13假如要算的话 四则运算法则也算一种方法 ,当然也是夹杂其中的

14还有对付数列极限的一种方法,

就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。 一般是从0到1的形式 。

15单调有界的性质

对付递推数列时候使用 证明单调性

16直接使用求导数的定义来求极限 ,

(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式, 看见了有特别注意)

(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义)

高数之数列极限的方法总结 第3篇

求高极限数的方法总结

求高数极限的方法总结

1、利用定义求极限。

2、利用柯西准则来求。

柯西准则:要使{xn}有极限的充要条件使任给ε>0,存在自然数N,使得当n>N时,对于

任意的.自然数m有|xn-xm|<ε.

3、利用极限的运算性质及已知的极限来求。

如:lim(x+x^)^(x+1)^

=lim(x^)(1+1/x^)^(x^)(1+1/x)^

=1.

4、利用不等式即:夹挤定理。

5、利用变量替换求极限。

例如lim (x^1/m-1)/(x^1/n-1)

可令x=y^mn

得:=n/m.

6、利用两个重要极限来求极限。

(1)lim sinx/x=1

x->0

(2)lim (1+1/n)^n=e

n->∞

7、利用单调有界必有极限来求。

8、利用函数连续得性质求极限。

9、用洛必达法则求,这是用得最多的。

10、用泰勒公式来求,这用得也很经常。

高数之数列极限的方法总结 第4篇

(一) 四则运算法则

四则运算法则在极限中最直接的应用就是分解,即将复杂的函数分解为若干个相对简单的函数和、积和商,各自求出极限即可得到要求的极限。但是在分解的时候要注意:(1)分解的各部分各自的`极限都要存在;(2)满足相应四则运算法则,(分母不能为0)。四则运算的另外一个应用就是“抓大头”。如果极限式中有几项均是无穷大,就从无穷大中选取起主要作用的那一项,选取的标准是选趋近于无穷最快的那一项,对数函数趋于无穷的速度远远小于幂函数,幂函数趋于无穷的速度远远小于指数函数。

(二) 洛必达法则(结合等价无穷小替换、变限积分求导)

洛必达法则解决的是“零比零“或“无穷比无穷”型的未定式的形式,所以只要是这两种形式的未定式都可以考虑用洛必达法则。当然,在用洛必达的时候需要注意(1)它的三个条件都要满足,尤其要注意第二三个条件,当三个条件都满足的时候才能用洛必达法则;(2)用洛必达法则之前一定要先化简,把要求极限的式子化成“干净”的式子,否则会遇到越求导越麻烦的情况,有的甚至求不出来,所以一定要先化简。化简常用的方法就是等价无穷小替换,有时也会用到四则运算。考生一定要熟记常用的等价无穷小,以及替换原则(乘除因子可以替换,加减不要替换)。考研中,除了也常常会把变限积分和洛必达相结合进行考查,这种类型的题目,首先要考虑洛必达,但是我们也要掌握变限积分求导。

另外,考试中有时候不直接考查“零比零“或“无穷比无穷”型,会出“零乘以无穷”,“无穷减无穷”这种形式,我们用的方法就是把他们变成“零比零“或“无穷比无穷”型。

(三) 利用泰勒公式求极限

利用泰勒公式求极限,也是考研中常见的方法。泰勒公式可以将常用的等价无穷小进行推广,如

(四) 定积分定义

考研中求n项和的极限这类题型用夹逼定理做不出来,这时候需要用定积分定义去求极限。常用的是这种形式

只要把要求的极限凑成等是左边的形式,就可以用定积分去求极限了。

高数之数列极限的方法总结 第5篇

1.验证定义。:“猜出”极限值,然后再验证这个值确实是极限值/验证收敛,再由极限唯一性可得。

2.利用收敛定理、两边夹、关于无穷小/大的一些结果,四则运算、复合(形式上的“换元公式”)、函数极限的序列式定义。

从1+2得到的一些基本的结果出发,利用3就可以去完成一大堆极限运算了。

先从函数极限开始:

3.利用初等函数的连续性,结果就是把求极限变成了求函数值。

4.关于P(x)/Q(x),P、Q是两个多项式。如果Q(a)不等于0,见4;如果Q(a)等于0但P(a)不等于0,Infinity;如果Q(a)=P(a)=0,利用综合除法,P、Q均除以(x-a),可以多除几次直到“Q”不能被整除,这时候就转化为前面的情形。

5.其它0/0:利用“换元”尽一切可能地转化为几种基本极限中的一种或多种。当然这里有一大杀器L'Hospital法则,不过注意它不能用来求sin x/x(x趋于0),因为:L'Hospital法则需要sin的导数,而求出lim sin x/x——求sinx的导数。

关于序列极限;

,利用a^n-b^n=(a-b)[a^(n-1)+ba^(n-2)+……+b^(n-1)]以及加减辅助项,尽量把减转化为加。

7.如果是递推形式,先利用递推式求出极限(如果有)应该满足的方程,求出极限,然后验证序列收敛。或者利用压缩映像。

高数之数列极限的方法总结 第6篇

数列求通项的方法总结

按一定次序排列的一列数称为数列,而将数列{an} 的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。为大家总结数列求通项的方法,一起来看看吧!

一、累差法

递推式为:an+1=an+f(n)(f(n)可求和)

思路::令n=1,2,…,n-1可得

a2-a1=f(1)

a3-a2=f(2)

a4-a3=f(3)

an-an-1=f(n-1)

将这个式子累加起来可得

an-a1=f(1)+f(2)+…+f(n-1)

∵f(n)可求和

∴an=a1+f(1)+f(2)+ …+f(n-1)

当然我们还要验证当n=1时,a1是否满足上式

例1、已知数列{a}中,a1=1,an+1=an+2,求an

解: 令n=1,2,…,n-1可得

a2-a1=2

a3-a2=22

a4-a3=23

an-an-1=2n-1

将这个式子累加起来可得

an-a1=f(1)+f(2)+…+f(n-1)

∵f(n)可求和

∴an=a1+f(1)+f(2)+…+f(n-1)

当n=1时,a1适合上式

故an=2n-1

二、累商法

递推式为:an+1=f(n)an(f(n)要可求积)

思路:令n=1,2, …,n-1可得

a2/a1=f(1)

a3/a2=f(2)

a4/a3=f(3)

an/an-1=f(n-1)

将这个式子相乘可得an/a1=f(1)f(2) …f(n-1)

∵f(n)可求积

∴an=a1f(1)f(2) …f(n-1)

当然我们还要验证当n=1时,a1是否适合上式

例2、在数列{an}中,a1=2,an+1=(n+1)an/n,求an

解: 令n=1,2, …,n-1可得

a2/a1=f(1)

a3/a2=f(2)

a4/a3=f(3)

an/an-1=f(n-1)

将这个式子相乘后可得an/a1=2/1×3/24×/3×…×n/(n-1)

即an=2n

当n=1时,an也适合上式

∴an=2n

三,构造法

1、递推关系式为an+1=pan+q (p,q为常数)

思路:设递推式可化为an+1+x=p(an+x),得an+1=pan+(p-1)x,解得x=q/(p-1)

故可将递推式化为an+1+x=p(an+x)

构造数列{bn},bn=an+q/(p-1)

bn+1=pbn即bn+1/bn=p,{bn}为等比数列.

故可求出bn=f(n)再将bn=an+q/(p-1)代入即可得an

例3、(06重庆)数列{an}中,对于n>1(nN)有an=2an-1+3,求an

解:设递推式可化为an+x=2(an-1+x),得an=2an-1+x,解得x=3

故可将递推式化为an+3=2(an-1+3)

构造数列{bn},bn=an+3

bn=2bn-1即bn/bn-1=2,{bn}为等比数列且公比为3

bn=bn-1·3,bn=an+3

bn=4×3n-1

高数之数列极限的方法总结 第7篇

求数列通项的方法总结

求数列的通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法灵活是灵活多变的,分享了求数列通项的方法,一起来看看吧!

一、累加法:利用an=a1+(a2-a1)+…(an-an-1)求通项公式的方法称为累加法。累加法是求型如an+1=an+f(n)的递推数列通项公式的基本方法(f(n)可求前n项和).

例1.已知数列an满足an+1=an+2n+1,a1=1,求数列an的通项公式。

解:由an+1=an+2n+1得an+1-an=2n+1则

an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+ (a2-a1)+a1

=[2(n-1)+1]+[2(n-2)+1]+…+(2×2+1)+(2×1+1)+1

=2[(n-1)+(n-2)+…+2+1]+(n-1)+1

=2+(n-1)+1

=(n-1)(n+1)+1

=n2

所以数列an的通项公式为an=n2。

例2:在数列{an}中,已知an+1= ,求该数列的通项公式.

备注:取倒数之后变成逐差法。

解:两边取倒数递推式化为:=+,即-=所以-=,-=,-=…-=.…,

将以上n-1个式子相加,得:-=++…+即=+++…+==1-故an==

二、累乘法:利用恒等式an=a1…(an≠0,n?叟n)求通项公式的方法称为累乘法,累乘法是求型如:an+1=g(n)an的递推数列通项公式的基本方法(数列g(n)可求前n项积).

例3.已知数列{an}中a1=,an=an-1(n?叟2)求数列{an}的通项公式。

解:当n?叟2时,=,=,=,…=将这n-1个式子累乘,得到=,从而an=×=,当n=1时,==a1,所以an= 。

注:在运用累乘法时,还是要特别注意项数,计算时项数容易出错.

三、公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有an=Sn-Sn-1(n?叟2),等差数列或等比数列的通项公式。

例4.已知Sn为数列an的前n项和,且Sn=2n+1,求数列an的通项公式.

解:当n=1时,a1=S1=2+1=3,当n?叟2时,an=Sn-Sn-1=(2n+1)-(2n-1+1)=2n-1.

而n=1时,21-1=1≠a1,∴an3(n=1)2n-1(n?叟2)。

四、构造新数列(待定系数法): ①将递推公式an+1=qan+d(q,d为常数,q≠0,d≠0)通过(an+1+x)=q(an+x)与原递推公式恒等变成an+1+=q(an+)的方法叫构造新数列.

例5.在数列an中,a1=1,当n?叟2时,有an=3an-1+2,求an的通项公式。

解:设an+m=3(an-1+m),即有an=3an-1+2m,对比an=3an-1+2,得m=1,于是得an+1=3(an-1+1),数列an+1是以a1+1=2为首项,以3为公比的等比数列,所以有an=23n-1-1。

类似题型练习:已知数列an满足a1=1,an+1=2an+1(n∈N*)求数列an的.通项公式.

注:此种类型an+1=pan+g(n)(p为常数,且p≠0,p≠1)与上式的区别,其解法如下:将等式两边同除以pn+1,则=+,令bn=,则bn+1=bn=,这样此种数列求通项的问题可以转化为逐差法的问题,当然这种数列的通项公式也常用待定系数法解决,关键要根据g(n)选择适当的形式。

如:an的首项a1=1,且an+1=4an+2n,求an

五、数学归纳法(用不完全归纳法猜想,用数学归纳法证明)

例6.设数列an满足:a1=1,an+1an-2n2(an+1-an)+1=0求数列an的通项公式.

解:由an+1an-2n2(an+1-an)+1=0得an+1=,可算得a2=3,a3=5,a4=7,猜想an=2n-1,并用数学归纳法予以证明(以下略)

六、待定系数法

例7.已知数列an满足an+1=2an+3×5n,a1=6,求数列an的通项公式。

解:设an+1+x×5n+1=2(an+x×5n) ④

将an+1=2an+3×5n代入④式,得2an+3×5n+x×5n+1=2an+2x×5n,等式两边消去2an,得35n+x5n+1=2x5n,两边除以5n,得3+5x=2x,则x=-1,代入④式得an+1-5n+1=2(an-5n) ⑤

由a1-51=6-5=1≠0及⑤式得an-5n≠0,则=2,则数列{an-5n}是以a1-51=1为首项,以2为公比的等比数列,则an-5n=2n-1,故an=2n-1+5n。

评注:本题解题的关键是把递推关系式an+1=2an+3×5n转化为an-1-5n+1=2(an-5n),从而可知数列{an-5n}是等比数列,进而求出数列{an-5n}的通项公式,最后再求出数列{an}的通项公式。

七、特征根法

形如递推公式为an+2=pan+1+qan(其中p,q均为常数)。对于由递推公式an+2=pan+1+qan,a1=α,a2=β,给出的数列an,方程x2-px-q=0,叫做数列an的特征方程。

若x1,x2是特征方程的两个根, 当x1≠x2时,数列an的通项为an=Axn-11+Bxn-12,其中A,B由a1=α,a2=β决定(即把a1,a2,x1,x2和n=1,2,代入an=Axn-11+Bxn-12,得到关于A、B的方程组);

当x1=x2时,数列an的通项为an=(A+Bn)xn-11,其中A,B由1=α,a2=β决定(即把a1,a2,x1,x2和n=1,2,代入an=(A+Bn)xn-11,得到关于A、B的方程组)。

例8.数列an:3an+2-5an+1+2an=0(n?叟0,n∈N),a1=a,a2=b求an

解:特征方程是3x2-5x+2=0,∵x1=1,x2= ,∴an=Axn-11+Bxn-12=A+Bn-1。

又由a1=a,a2=b,于是a=A+Bb=A+B?圯A=3b-2aB=3(a-b)

故an=3b-2a+3(a-b)()n-1

高数之数列极限的方法总结 第8篇

3.根据数列极限的定义证明:

(1)lim[1/(n的'平方)]=0

n→∞

(2)lim[(3n+1)/(2n+1)]=3/2

n→∞

(3)lim[根号(n+1)-根号(n)]=0

n→∞

(4)…9=1

n→∞ n个9

5几道数列极限的证明题,帮个忙。。。Lim就省略不打了。。。

n/(n^2+1)=0

√(n^2+4)/n=1

sin(1/n)=0

实质就是计算题,只不过题目把答案告诉你了,你把过程写出来就好了

第一题,分子分母都除以n,把n等于无穷带进去就行

第二题,利用海涅定理,把n换成x,原题由数列极限变成函数极限,用罗比达法则(不知楼主学了没,没学的话以后会学的)

第三题,n趋于无穷时1/n=0,sin(1/n)=0

不知楼主觉得我的解法对不对呀limn/(n^2+1)=lim(1/n)/(1+1/n^2)=lim(1/n)/(1+lim(1+n^2)=0/1=0

lim√(n^2+4)/n=lim√(1+4/n^2)=√1+lim(4/n^2)=√1+4lim(1/n^2)=1

limsin(1/n)=lim[(1/n)*sin(1/n)/(1/n)]=lim(1/n)*lim[sin(1/n)]/(1/n)=0*1=0

显示全文

注:本文部分文字与图片资源来自于网络,转载此文是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即后台留言通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意

点击下载文档

文档为doc格式

发表评论

评论列表(7人评论 , 39人围观)

点击下载
本文文档