定义域是什么?确定函数定义域的方法总结 第1篇

确定函数定义域的方法

函数定义域对函数图象、解析式等都起着决定性的作用,要使得函数解析式中的所有式子有意义,需要找出所有对函数自变量有限制的条件,进而求出函数的定义域。以下几种情况需要同学们格外注意:

1、关系式为整式时,函数定义域为全体实数;

2、关系式含有分式时,分式的分母不等于零;

3、关系式含有二次根式时,被开放方数大于等于零;

4、关系式中含有指数为零的式子时,底数不等于零;

5、实际问题中,函数定义域还要和实际情况相符合,使之有意义。

定义域是什么?确定函数定义域的方法总结 第2篇

函数定义域研究论文

函数定义域研究论文,函数的定义域是构成函数的两大要素之一,函数的定义域(或变量的允许值范围)似乎是非常简单的,然而在解决问题中不加以注意,常常会使人误入歧途。

函数定义域研究论文【1】

摘 要:函数作为高中数学的主线,贯穿于整个高中数学的始终。在解函数题中强调定义域对解题结论的作用与影响,对提高学生的数学思维品质是十分有益的。

关键词:定义域;误入歧途;作用与影响;思维品质

一、函数关系式与定义域

函数关系式包括定义域和对应法则,所以在求函数的关系式时必须要考虑所求函数关系式的定义域,否则所求函数关系式可能是错误。如:

例1:某单位计划建筑一矩形围墙,现有材料可筑墙的总长度为100m,求矩形的面积S与矩形长x的函数关系式?

解:设矩形的长为x米,则宽为(50-x)米,由题意得:

故函数关系式为:.

如果解题到此为止,则本题的函数关系式还欠完整,缺少自变量x的范围。也就说学生的解题思路不够严密。因为当自变量x取负数或不小于50的数时,S的值是负数,即矩形的面积为负数,这与实际问题相矛盾,所以还应补上自变量x的范围:

即:函数关系式为:

这个例子说明,在用函数方法解决实际问题时,必须要注意到函数定义域的取值范围对实际问题的影响。若考虑不到这一点,就体现出学生思维缺乏严密性。若注意到定义域的变化,就说明学生的解题思维过程体现出较好思维的严密性。

二、函数最值与定义域

函数的最值是指函数在给定的定义域区间上能否取到最大(小)值的问题。如果不注意定义域,将会导致最值的错误。如:

例2:求函数在[-2,5]上的最值.

解:∵

∴当x=1时,

初看结论,本题似乎没有最大值,只有最小值。产生这种错误的根源在于学生是按照求二次函数最值的思路,而没有注意到已知条件发生变化。这是思维呆板性的一种表现,也说明学生思维缺乏灵活性。

其实以上结论只是对二次函数在R上适用,而在指定的定义域区间上,它的最值应分如下情况:

当时,在上最值情况是:

.即最大值是中最大的一个值。

故本题还要继续做下去:

∴函数在[-2,5]上的最小值是- 4,最大值是12.

这个例子说明,在函数定义域受到限制时,若能注意定义域的取值范围对函数最值的影响,并在解题过程中加以注意,便体现出学生思维的灵活性。

三、函数值域与定义域

函数的值域是该函数全体函数值的集合,当定义域和对应法则确定,函数值也随之而定。因此在求函数值域时,应注意函数定义域。如:

例3:求函数的值域.

错解:令

故所求的函数值域是.

剖析:经换元后,应有,而函数在[0,+∞)上是增函数,

所以当t=0时,ymin=1.

故所求的函数值域是[1, +∞).

以上例子说明,变量的允许值范围是何等的重要,若能发现变量隐含的取值范围,精细地检查解题思维的过程,就可以避免以上错误结果的产生。也就是说,学生若能在解好题目后,检验已经得到的结果,善于找出和改正自己的错误,善于精细地检查思维过程,便体现出良好的思维批判性。

四、函数单调性与定义域

函数单调性是指函数在给定的定义域区间上函数自变量增加时,函数值随着增减的情况,所以讨论函数单调性必须在给定的定义域区间上进行。如:

例4:指出函数的单调区间.

解:先求定义域:

∴函数定义域为.

令,知在上时,u为减函数,

在上时, u为增函数。

又∵.

∴函数在上是减函数,在上是增函数。

即函数的单调递增区间,单调递减区间是。

如果在做题时,没有在定义域的两个区间上分别考虑函数的单调性,就说明学生对函数单调性的概念一知半解,没有理解,在做练习或作业时,只是对题型,套公式,而不去领会解题方法的实质,也说明学生的思维缺乏深刻性。

五、函数奇偶性与定义域

判断函数的奇偶性,应先考虑该函数的定义域区间是否关于坐标原点成中心对称,如果定义域区间是关于坐标原点不成中心对称,则函数就无奇偶性可谈。否则要用奇偶性定义加以判断。如:

例5:判断函数的奇偶性.

解:∵

∴ 定义域区间[-1,3]关于坐标原点不对称

∴函数是非奇非偶函数.

若学生像以上这样的过程解完这道题目,就很好地体现出学生解题思维的敏捷性

如果学生不注意函数定义域,那么判断函数的奇偶性得出如下错误结论:

∴ 函数是奇函数.

错误剖析:因为以上做法是没有判断该函数的定义域区间是否关于原点成中心对称的前提下直接加以判断所造成,这是学生极易忽视的步骤,也是造成结论错误的原因。

综上所述,在求解函数函数关系式、最值(值域)、单调性、奇偶性等问题中,若能精细地检查思维过程,思辨函数定义域有无改变(指对定义域为R来说),对解题结果有无影响,就能提高学生质疑辨析能力,有利于培养学生的思维品质,从而不断提高学生思维能力,进而有利于培养学生思维的创造性。

函数定义域的类型与求法【2】

导读:函数的定义域是函数三要素之关键。函数的定义域(使函数解析式有意义的自变量的取值范围)似乎是非常简单的。解析式,浅谈函数定义域的类型与求法。 关键词:解析式,定义域 函数作为高中数学的主线,贯穿于整个高中数学的始终。函数的定义域是函数三要素之关键,特别是函数性质必须从定义域出发,它在解

决和研究函数最值、奇偶性、周期、方程、不等式等问题中起着十分重要的作用。函数的定义域(使函数解析式有意义的自变量的取值范围)似乎是非常简单的,然而在解决问题中不加以注意,常常会使人误入歧途。大全,解析式。

本文介绍求函数定义域的类型和求法,目的在于使学生全面认识定义域,深刻理解定义域,正确求函数的定义域,在解函数题中强调定义域对解题结论的作用与影响,树立起“定义域优先”的观点,对提高学生的数学思维的培养是十分有益的。

一 、一般型

即给出函数的解析式求定义域,其解法的一般原则是:

①如果为整式,其定义域为R;

②如果为分式,其定义域是使分母不为0的实数集合;

③如果是二次根式(偶次根式),其定义域是使根号内的式子不小于0的实数集合;

④如果是基本初等函数(如指数函数、对数函数、三角函数、无理函数等),掌握其函数定义域。

⑤如果是由以上几个部分的数学式子构成的,其定义域是使各部分式子都有意义的实数集合;

⑥f(x)=x0的定义域是;

例1:y=lg(6-x2)

解:要使函数有意义,则必须满足

x+5≥0x≥-5

∵ 6-x2>0 ∴ -

6-x2≠1x≠±

解得-

二、实际问题型

函数的解析式包括定义域和对应法则,所以在求函数的解析式时必须要考虑所求函数解析式的定义域,还要考虑实际问题中定义域受到实际意义的制约,否则所求函数关系式可能是错误。如:

例2:将一个底面圆的直径为d的圆柱截成横截面为长方形的棱柱,若这个长方形截面的一条边长为x,对角线为d,截面的面积为A,求面积A以x为自变量的函数关系式?

解:设截面的'一条边长为x,对角线为d,另一条边为,由题意得:

S=x

故函数解析式为:S=x

如果解题到此为止,则本题的函数关系式还欠完整,缺少自变量的范围。也就说学生的解题思路不够严密。因为当自变量取负数或取不小于d的数时,S的值即截面的面积A为负数或被开方数为负数无意义,这与实际问题相矛盾,所以还应补上自变量的范围:

即:函数关系式为:S=x()

这个例子说明,在用函数方法解决实际问题时,必须要注意到函数定义域的取值范围对实际问题的影响。若考虑不到这一点,就体现出学生思维缺乏严密性。若注意到定义域的变化,就说明学生的解题思维过程体现出较好思维的严密性 。

三 抽象函数型

抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况

(1)已知的定义域,求的定义域。

其解法是:已知的定义域是[a,b]求的定义域是解,即为所求的定义域。

例3 已知的定义域为[-2,2],求的定义域。

解:令,

得,即,

因此,从而,

故函数的定义域是

(2)已知的定义域,求f(x)的定义域。

其解法是:已知的定义域是[a,b],求f(x)定义域的方法是:由,求g(x)的值域,即所求f(x)的定义域。大全,解析式。

例4 已知的定义域为[1,2],求f(x)的定义域。

解:∵1x2,

∴22x4

∴32x+15

故函数f(x)的定义域是

评述:例3和例4是互为逆向的,解这类题的关键在于搞清复合函数的自变量问题,抓住已知条件,得到要求函数的未知数。变式题

例5:已知函数y=f(x+1)的的定义域是[-2,3],

求y=f(2x-1)的定义域。

解:∵函数y=f(x+1)的的定义域是[-2,3],

∴ -2x3 ,

∴-1x+14,

∴定义域[-1,4]。

再由-12x-14,得0x

故y=f(2x-1)的定义域是[0, ]。

四 逆向思维型

定义域是什么?确定函数定义域的方法总结 第3篇

高一函数的定义域怎么求

定义域

(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域;

名称定义

函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合

常用的求值域的方法

(1)化归法;(2)图象法(数形结合),

(3)函数单调性法,

(4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等

关于函数值域误区

定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。

“范围”与“值域”相同吗?

“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。

二.数学的学习方法

1.数学要求具备熟练的计算能力,所以课后还有做足一定量的练习题,只有通过做题练习才能拥有计算能力。

2.课前要做好预习,这样上数学课时才能把不会的知识点更好的消化吸收掉。

3.数学公式一定要记熟,并且还要会推导,能举一反三。

4.数学重在理解,在开始学习知识的时候,一定要弄懂。所以上课要认真听讲,看看老师是怎样讲解的。

5.数学80%的分数来源于基础知识,20%的分数属于难点,所以考120分并不难。

6.数学需要沉下心去做,浮躁的人很难学好数学,踏踏实实做题才是硬道理。

7.数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。

8.数学最主要的就是解题过程,懂得数学思维很关键,思路通了,数学自然就会了。

9.数学不是用来看的,而是用来算的,或许这一秒没思路,当你拿起笔开始计算的那一秒,就豁然开朗了。

10.数学题目不会做,原因之一就是例题没研究明白,所以数学书上的例题绝对不要放过。

定义域是什么?确定函数定义域的方法总结 第4篇

二次函数解题方法总结

二次函数是初中重要的数学知识点,本文就来分享一篇二次函数解题方法总结,希望对大家能有所帮助!

1.求证“两线段相等”的问题:

2.“平行于y轴的动线段长度的最大值”的问题:

由于平行于y轴的线段上各个点的横坐标相等(常设为t),借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t的代数式表示出来,再由两个端点的高低情况,运用平行于y轴的线段长度计算公式,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标。

3.求一个已知点关于一条已知直线的对称点的坐标问题:

先用点斜式(或称K点法)求出过已知点,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可。

4.“抛物线上是否存在一点,使之到定直线的距离最大”的问题:

(方法1)先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式(注意该直线与定直线的斜率相等,因为平行直线斜率(k)相等),再由该直线与抛物线的解析式组成方程组,用代入法把字母y消掉,得到一个关于x的的一元二次方程,由题有△=-4ac=0(因为该直线与抛物线相切,只有一个交点,所以-4ac=0)从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x、y的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离。

(方法2)该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离。

(方法3)先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出。

5.常数问题:

(1)点到直线的距离中的常数问题:

“抛物线上是否存在一点,使之到定直线的距离等于一个固定常数”的问题:

先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了。

(2)三角形面积中的常数问题:

“抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题:

先求出定线段的长度,再表示出动点(其坐标需用一个字母表示)到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了。

6.“在定直线(常为抛物线的对称轴,或x轴或y轴或其它的定直线)上是否存在一点,使之到两定点的距离之和最小”的问题:

先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出(利用求交点坐标的方法)。

7.三角形周长的“最值(最大值或最小值)”问题:

“在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题(简称“一边固定两边动的问题):

由于有两个定点,所以该三角形有一定边(其长度可利用两点间距离公式计算),只需另两边的和最小即可。

8.三角形面积的最大值问题:

①“抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题(简称“一边固定两边动的问题”):

(方法1)先利用两点间的距离公式求出定线段的长度;然后再利用上面3的方法,求出抛物线上的动点到该定直线的最大距离。最后利用三角形的面积公式底·高1/2。即可求出该三角形面积的最大值,同时在求解过程中,切点即为符合题意要求的点。

(方法2)过动点向y轴作平行线找到与定线段(或所在直线)的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,

进一步可得到,转化为一个开口向下的二次函数问题来求出最大值。

②“三边均动的动三角形面积最大”的问题(简称“三边均动”的问题):

先把动三角形分割成两个基本模型的三角形(有一边在x轴或y轴上的三角形,或者有一边平行于x轴或y轴的三角形,称为基本模型的三角形)面积之差,设出动点在x轴或y轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形与图中另一个三角形相似(常为图中最大的那一个三角形)。利用相似三角形的性质(对应边的比等于对应高的比)可表示出分割后的一个三角形的高。从而可以表示出动三角形的面积的一个开口向下的二次函数关系式,相应问题也就轻松解决了。

9.“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:

由于该四边形有三个定点,从而可把动四边形分割成一个动三角形与一个定三角形(连结两个定点,即可得到一个定三角形)的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同。

10、“定四边形面积的求解”问题:

有两种常见解决的方案:

方案(一):连接一条对角线,分成两个三角形面积之和;

方案(二):过不在x轴或y轴上的四边形的一个顶点,向x轴(或y轴)作垂线,或者把该点与原点连结起来,分割成一个梯形(常为直角梯形)和一些三角形的面积之和(或差),或几个基本模型的三角形面积的和(差)

11.“两个三角形相似”的问题:

12.“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:

首先弄清题中是否规定了哪个点为等腰三角形的顶点。(若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形,则有三种情况)。先借助于动点所在图象的解析式,表示出动点的坐标(一母示),按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程。解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点(就是不能构成三角形这个题意)。

13、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:

这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标(若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标),任选一个已知点作为对角线的起点,列出所有可能的对角线(显然最多有3条),此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的'判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可。

进一步有:

①若是否存在这样的动点构成矩形呢?先让动点构成平行四边形,再验证两条对角线相等否?若相等,则所求动点能构成矩形,否则这样的动点不存在。

②若是否存在这样的动点构成棱形呢?先让动点构成平行四边形,再验证任意一组邻边相等否?若相等,则所求动点能构成棱形,否则这样的动点不存在。

③若是否存在这样的动点构成正方形呢?先让动点构成平行四边形,再验证任意一组邻边是否相等?和两条对角线是否相等?若都相等,则所求动点能构成正方形,否则这样的动点不存在。

14.“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:(此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形。)

先用动点坐标“一母示”的方法设出直接动点坐标,分别表示(如果图形是动图形就只能表示出其面积)或计算(如果图形是定图形就计算出它的具体面积),然后由题意建立两个图形面积关系的一个方程,解之即可。(注意去掉不合题意的点),如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可。

15.“某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:

若夹直角的两边与y轴都不平行:先设出动点坐标(一母示),视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线(没有与y轴平行的直线)垂直的斜率结论(两直线的斜率相乘等于-1),得到一个方程,解之即可。

若夹直角的两边中有一边与y轴平行,此时不能使用斜率公式。补救措施是:过余下的那一个点(没在平行于y轴的那条直线上的点)直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定。

16.“某图象上是否存在一点,使之与另两定点构成等腰直角三角形”的问题。

①若定点为直角顶点,先用k点法求出另一直角边所在直线的解析式(如斜率不存在,根据定直角点,可以直接写出另一直角边所在直线的方程),利用该解析式与所求点所在的图象的解析式组成方程组,求出交点坐标,再用两点间的距离公式计算出两条直角边等否?若等,该交点合题,反之不合题,舍去。

②若动点为直角顶点:先利用k点法求出定线段的中垂线的解析式,再把该解析式与所求点所在图象的解析式组成方程组,求出交点坐标,再分别计算出该点与两定点所在的两条直线的斜率,把这两个斜率相乘,看其结果是否为-1?若为-1,则就说明所求交点合题;反之,舍去。

17.“题中含有两角相等,求相关点的坐标或线段长度”等的问题:

题中含有两角相等,则意味着应该运用三角形相似来解决,此时寻找三角形相似中的基本模型“A”或“X”是关键和突破口。

定义域是什么?确定函数定义域的方法总结 第5篇

若函数=的定义域是B,=()的定义域是A,则复合函数=[()]的定义域是

D={|∈A,且()∈B}综合考虑各部分的x的取值范围,取他们的交集。

求函数的定义域主要应考虑以下几点:

⑴当为整式或奇次根式时,R;

⑵当为偶次根式时,被开方数不小于0(即≥0);

⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;

⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。

⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。

⑹分段函数的定义域是各段上自变量的取值集合的并集。

⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求

⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。

⑼对数函数的真数必须大于零,底数大于零且不等于1。

⑽三角函数中的切割函数要注意对角变量的限制。

定义域是什么?确定函数定义域的方法总结 第6篇

f(x)是函数的符号,它代表函数图象上每一个点的纵坐标的数值,因此函数图像上所有点的纵坐标构成一个集合,这个集合就是函数的值域。x是自变量,它代表着函数图象上每一点的横坐标,自变量的取值范围就是函数的定义域。f是对应法则的代表,它可以由f(x)的解析式决定。例如:f(x)=x^2+1,f代表的是把自变量x先平方再加1。x2+1的取值范围(x2+1≥1)就是f(x)=x2+1的值域。如果说你弄清了上述问题,仅仅是对函数f(x)有了一个初步的认识,我们还需要对f(x)有更深刻的了解。

显示全文

注:本文部分文字与图片资源来自于网络,转载此文是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即后台留言通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意

点击下载文档

文档为doc格式

发表评论

评论列表(7人评论 , 39人围观)

点击下载
本文文档