微积分导数求法总结(热门13篇)

山崖发表网工作总结2024-01-22 11:30:2439

微积分导数求法总结 第1篇

函数与导数

第一、求函数定义域题忽视细节函数的定义域是使函数有意义的自变量的取值范围,考生想要在考场上准确求出定义域,就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。在求一般函数定义域时,要注意以下几点:分母不为0;偶次被开放式非负;真数大于0以及0的0次幂无意义。函数的定义域是非空的数集,在解答函数定义域类的题时千万别忘了这一点。复合函数要注意外层函数的定义域由内层函数的值域决定。

第二、带绝对值的函数单调性判断错误带绝对值的函数实质上就是分段函数,判断分段函数的单调性有两种方法:第一,在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,然后对各个段上的单调区间进行整合;第二,画出这个分段函数的图象,结合函数图象、性质能够进行直观的判断。函数题离不开函数图象,而函数图象反应了函数的所有性质,考生在解答函数题时,要第一时间在脑海中画出函数图象,从图象上分析问题,解决问题。对于函数不同的单调递增(减)区间,千万记住,不要使用并集,指明这几个区间是该函数的单调递增(减)区间即可。

第三、求函数奇偶性的常见错误求函数奇偶性类的题最常见的错误有求错函数定义域或忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断。在用定义进行判断时,要注意自变量在定义域区间内的任意性。

第四、抽象函数推理不严谨很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计的,在解答此类问题时,考生可以通过类比这类函数中一些具体函数的性质去解决抽象函数。多用特殊赋值法,通过特殊赋可以找到函数的不变性质,这往往是问题的突破口。抽象函数性质的证明属于代数推理,和几何推理证明一样,考生在作答时要注意推理的严谨性。每一步都要有充分的条件,别漏掉条件,更不能臆造条件,推理过程层次分明,还要注意书写规范。

第五、函数零点定理使用不当若函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)f(b)

第六、混淆两类切线曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此,考生在求解曲线的切线问题时,首先要区分是什么类型的切线。

第七、混淆导数与单调性的关系一个函数在某个区间上是增函数的这类题型,如果考生认为函数的导函数在此区间上恒大于0,很容易就会出错。解答函数的单调性与其导函数的关系时一定要注意,一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。

>>>返回目录

高中数学的学习方法

首先,不要忽视课本。把高一高二的所有教学课本找出来,认认真真仔仔细细地把里面的知识点定理公理等等都看一遍,包括书上的证明也不要忽视。不是说看一遍就了事的,而是真正的去理解他。因为在你高一高二所有的月考,期中考,期末考,经历了这么多题海战术之后你要做的就是要回归课本。你会发现有些高考题,他是很巧妙的利用了书上一些简单的定义进行变换和引申得到的。所以当老师带着从头复习的时候,不要排斥,而是要回忆,消化,理解和掌握这些书本上的基础知识。

第二,要尝试着去掌握一些新的定理和法则。在高一高二的时候,老师可能会说这个公式不是大纲要求的,所以不必掌握。这是完全正确的,因为当时所有的知识都是新的,你在面对过多新知识的时候,很难消化和掌握。但是现在你已经掌握了很多知识的基础上,在去适当的结合自己的能力去了解一些考纲之外的,就更容易掌握了。比如洛必达法则,高中虽然不讲,但是在答大题的时候用起来很方便的一个法则。如果你掌握了,你就会比别人做的更好更快更准确。

第三,要注意数学思想和方法的总结。比如说画图的思想,转化的思想等等。这个操作起来还是比较容易的。就是在你每次做完题要注意看解析,看他是怎么分析试题的;老师讲课的时候是怎么讲解和归类的;甚至可以多问一下身边的同学是怎么做这道题的,来寻求一题多解,多思路,看有没有比你的方法更好的方法。良好的方法是成功的一半,掌握了正确的方法不仅省时更省力。

第四,计算能力的提高。讲真,我是没有这个毛病的。但是我身边的好多同学有这个问题,就是明明会做的题一定会算错。小题大题一张卷下来能扣出来10分。嘴上说着是粗心,但我认为不是。我觉得有两个原因,一个是知识掌握的不牢固,另一个是自身计算能力太差。这两点都是很致命的。计算能力的提高,会让正确率上升,会做的题会一次性做对。同时,也会节省出很多时间,去做其他的题。所以从一轮复习开始就要学会提升自己的计算能力,这样到最后才不会后悔

>>>返回目录

如何提升高中数学成绩

1.数学能力的培养主要在课堂上进行,所以要特别重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,比较自己的解题思路与教师所讲有哪些不同。先把基础吃透了,公式的推导过程是万变的根基,首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

2.要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,这是必要的,中学的题开型就那么些类型,一定要熟练掌握各种类型,主攻错题。

3.应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。

高中数学与初中数学最大的区别是概念多并且较抽象,学起来和以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。

4.数学的学习一点都不比熟悉电脑游戏难,但也不必像小学生那样搞“题海战术”,以“题海战术”这种方法只会使数学越学越糟。做过多的题会让人失去耐心,当做到真正重要的题目的时候反而容易混淆。当我们所学的概念在题目中出现时,那些与重要概念直接相关的题目就是重要的题目。

5.数学能力差,主要表现在对基本技能的理解、掌握和应用上.只有在巩固基础知识和掌握基本技能的前提下,才能进行综合能力的强化。因此,学习数学一定要在基础上下功夫,在数学的学习上不少学生会犯一个错误,因为大多老师和各种数学方法上都说要大量做题,其实它有个前提条件,做题是在三律吃透的前提下才有作用。

6.多从举一反三上下功夫,上课能听懂,作业能完成,就是成绩提不高.这是高中生共同的“心声...由于课堂信息容量小,知识单一,在老师的指导下,学生一般都能听懂,课后的练习多是直接应用概念套用算法,过程简单且技能技巧要求较低,还有受速度和时间等方面的影响,不大注重课后的理解掌握和能力提高,只想着多做题。因此,学习中要多分析基础类、综合类、方法类、变条件、变结论、变思想、变方法,并对其中具有代表性的问题进行详尽的剖析,做到触类旁通,这有利于提高高中生的学习数学成绩。

>>>返回目录

微积分导数求法总结 第2篇

高考导数知识点总结

一、函数的单调性

在(a,b)内可导函数f(x),f(x)在(a,b)任意子区间内都不恒等于0.

f(x)f(x)在(a,b)上为增函数.

f(x)f(x)在(a,b)上为减函数.

二、函数的极值

1、函数的极小值:

函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f(a)=0,而且在点x=a附近的左侧f(x)0,右侧f(x)0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.

2、函数的极大值:

函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f(b)=0,而且在点x=b附近的左侧f(x)0,右侧f(x)0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.

极小值点,极大值点统称为极值点,极大值和极小值统称为极值.

三、函数的最值

1、在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.

2、若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.

四、求可导函数单调区间的一般步骤和方法

1、确定函数f(x)的定义域;

2、求f(x),令f(x)=0,求出它在定义域内的一切实数根;

3、把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;

4、确定f(x)在各个开区间内的符号,根据f(x)的符号判定函数f(x)在每个相应小开区间内的增减性.

五、求函数极值的步骤

1、确定函数的定义域;

2、求方程f(x)=0的根;

3、用方程f(x)=0的`根顺次将函数的定义域分成若干个小开区间,并形成表格;

4、由f(x)=0根的两侧导数的符号来判断f(x)在这个根处取极值的情况.

六、求函数f(x)在[a,b]上的最大值和最小值的步骤

1、求函数在(a,b)内的极值;

2、求函数在区间端点的函数值f(a),f(b);

3、将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.

特别提醒:

1、f(x)0与f(x)为增函数的关系:f(x)0能推出f(x)为增函数,但反之不一定.如函数f(x)=x3在(-,+)上单调递增,但f(x)0,所以f(x)0是f(x)为增函数的充分不必要条件.

2、可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y|x=0=0,但x=0不是极值点.此外,函数不可导的点也可能是函数的极值点.

3、可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.

微积分导数求法总结 第3篇

导数基础

导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量X在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df/dx(x0)。

(c为常数) y'=0

y'=nx^(n-1)

y'=a^xlna

y=e^x y'=e^x

y'=logae/x

y=lnx y'=1/x

y'=cosx

y'=-sinx

y'=1/cos^2x

y'=-1/sin^2x

y'=1/√1-x^2

y'=-1/√1-x^2

y'=1/1+x^2

y'=-1/1+x^2

在推导的过程中有这几个常见的公式需要用到:

[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』

'=u'v-uv'/v^2

(x)的反函数是x=g(y),则有y'=1/x'

证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。

2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。

⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)

⊿y/⊿x=a^x(a^⊿x-1)/⊿x

如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1+β)。

所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β

显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。

把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。

可以知道,当a=e时有y=e^x y'=e^x。

⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x

⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x

因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有

lim⊿x→0⊿y/⊿x=logae/x。

可以知道,当a=e时有y=lnx y'=1/x。

这时可以进行y=x^n y'=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,

所以y'=e^nlnx•(nlnx)'=x^n•n/x=nx^(n-1)。

⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)

⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)

所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)•lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx

6.类似地,可以导出y=cosx y'=-sinx。

y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x

y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x

x=siny

x'=cosy

y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2

x=cosy

x'=-siny

y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2

x=tany

x'=1/cos^2y

y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2

x=coty

x'=-1/sin^2y

y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2

另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与

土v,y'=u'土v'

'v+uv'

均能较快捷地求得结果。

以上就是高二数学常用导数公式大全的全部内容,大家都记好了吗,只有记住公式才能更好地解题!

微积分导数求法总结 第4篇

高中导数知识点总结

导数的定义:

当自变量的增量Δx=x-x0,Δx→0时函数增量Δy=f(x)- f(x0)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率)。

函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在P0[x0,f(x0)] 点的切线斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

一般地,我们得出用函数的导数来判断函数的增减性(单调性)的法则:设y=f(x )在(a,b)内可导。如果在(a,b)内,f'(x)>0,则f(x)在这个区间是单调增加的(该点切线斜率增大,函数曲线变得“陡峭”,呈上升状)。如果在(a,b)内,f'(x)<0,则f(x)在这个区间是单调减小的。所以,当f'(x)=0时,y=f(x )有极大值或极小值,极大值中最大者是最大值,极小值中最小者是最小值

求导数的步骤:

求函数y=f(x)在x0处导数的步骤:

① 求函数的增量Δy=f(x0+Δx)—f(x0)

② 求平均变化率

③ 取极限,得导数。

导数公式:

① C'=0(C为常数函数);

② (x^n)'= nx^(n—1) (n∈Q*);熟记1/X的导数

③ (sinx)' = cosx; (cosx)' = — sinx; (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 —(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanxsecx (cscx)'=—cotxcscx (arcsinx)'=1/(1—x^2)^1/2 (arccosx)'=—1/(1—x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=—1/(1+x^2) (arcsecx)'=1/(|x|(x^2—1)^1/2) (arccscx)'=—1/(|x|(x^2—1)^1/2)

④ (sinhx)'=hcoshx (coshx)'=—hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=—1/(sinhx)^2=—(cschx)^2 (sechx)'=—tanhxsechx (cschx)'=—cothxcschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2—1)^1/2 (artanhx)'=1/(x^2—1) (|x|<1) (arcothx)'=1/(x^2—1) (|x|>1) (arsechx)'=1/(x(1—x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2)

⑤ (e^x)' = e^x; (a^x)' = a^xlna (ln为自然对数) (Inx)' = 1/x(ln为自然对数) (logax)' =(xlna)^(—1),(a>0且a不等于1) (x^1/2)'=[2(x^1/2)]^(—1) (1/x)'=—x^(—2)

导数的应用:

1.函数的单调性

(1)利用导数的符号判断函数的增减性 利用导数的符号判断函数的增减性,这是导数几何意义在研究曲线变化规律时的一个应用,它充分体现了数形结合的思想。 一般地,在某个区间(a,b)内,如果f'(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f'(x)<0,那么函数y=f(x)在这个区间内单调递减。 如果在某个区间内恒有f'(x)=0,则f(x)是常数函数。 注意:在某个区间内,f'(x)>0是f(x)在此区间上为增函数的`充分条件,而不是必要条件,如f(x)=x3在R内是增函数,但x=0时f'(x)=0。也就是说,如果已知f(x)为增函数,解题时就必须写f'(x)≥0。

(2)求函数单调区间的步骤(不要按图索骥 缘木求鱼 这样创新何言?1。定义最基础求法2。复合函数单调性) ①确定f(x)的定义域; ②求导数; ③由(或)解出相应的x的范围。当f'(x)>0时,f(x)在相应区间上是增函数;当f'(x)<0时,f(x)在相应区间上是减函数。

2.函数的极值

(1)函数的极值的判定

①如果在两侧符号相同,则不是f(x)的极值点;

②如果在附近的左右侧符号不同,那么,是极大值或极小值。

3.求函数极值的步骤

①确定函数的定义域; ②求导数; ③在定义域内求出所有的驻点与导数不存在的点,即求方程及的所有实根; ④检查在驻点左右的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值。

4.函数的最值

(1)如果f(x)在[a,b]上的最大值(或最小值)是在(a,b)内一点处取得的,显然这个最大值(或最小值)同时是个极大值(或极小值),它是f(x)在(a,b)内所有的极大值(或极小值)中最大的(或最小的),但是最值也可能在[a,b]的端点a或b处取得,极值与最值是两个不同的概念。

(2)求f(x)在[a,b]上的最大值与最小值的步骤 ①求f(x)在(a,b)内的极值; ②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。

5.生活中的优化问题

生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题称为优化问题,优化问题也称为最值问题。解决这些问题具有非常现实的意义。这些问题通常可以转化为数学中的函数问题,进而转化为求函数的最大(小)值问题。

微积分导数求法总结 第5篇

一、早期导数概念----特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f(A+E)-f(A),发现的因子E就是我们所说的导数f'(A)。

二、17世纪----广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。

三、19世纪导数----逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{d/dx)=li(/x)。1823年柯西在他的《无穷小分析概论》中定义导数如果函数=f(x)在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的.值那么是使变量得到一个无穷小增量。19世纪60年代以后魏尔斯特拉斯创造了ε-δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。

四、实无限将异军突起微积分第二轮初等化或成为可能 微积分学理论基础大体可以分为两个部分。一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。就历史来看两种理论都有一定的道理。其中实无限用了150年后来极限论就是现在所使用的。光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论都不是最好的手段。

微积分导数求法总结 第6篇

高二数学《导数》知识点总结

1、导数的定义: 在点 处的导数记作 .

2. 导数的几何物理意义:曲线 在点 处切线的斜率

①=f/(x0)表示过曲线=f(x)上P(x0,f(x0))切线斜率。V=s/(t) 表示即时速度。a=v/(t) 表示加速度。

3.常见函数的导数公式: ① ;② ;③ ;

⑤ ;⑥ ;⑦ ;⑧ 。

4.导数的四则运算法则:

5.导数的应用:

(1)利用导数判断函数的单调性:设函数 在某个区间内可导,如果 ,那么 为增函数;如果 ,那么为减函数;

注意:如果已知 为减函数求字母取值范围,那么不等式 恒成立。

(2)求极值的步骤:

①求导数 ;

②求方程 的根;

③列表:检验 在方程 根的左右的符号,如果左正右负,那么函数 在这个根处取得极大值;如果左负右正,那么函数 在这个根处取得极小值;

(3)求可导函数最大值与最小值的步骤:

ⅰ求 的根; ⅱ把根与区间端点函数值比较,最大的为最大值,最小的是最小值。

导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!

导数是微积分中的`重要基础概念。当函数=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δ与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

对于可导的函数f(x),xf'(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

设函数=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δ=f(x0+Δx)-f(x0);如果Δ与Δx之比当Δx→0时极限存在,则称函数=f(x)在点x0处可导,并称这个极限为函数=f(x)在点x0处的导数记为f'(x0),也记作'│x=x0或d/dx│x=x0

微积分导数求法总结 第7篇

首先,关于二次函数的不等式恒成立的主要解法:

1、分离变量;2变更主元;3根分布;4判别式法

5、二次函数区间最值求法:(1)对称轴(重视单调区间)

与定义域的关系(2)端点处和顶点是最值所在

其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。

最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础

一、基础题型:函数的单调区间、极值、最值;不等式恒成立;

1、此类问题提倡按以下三个步骤进行解决:

第一步:令得到两个根;

第二步:画两图或列表;

第三步:由图表可知;

其中不等式恒成立问题的实质是函数的最值问题,

2、常见处理方法有三种:

第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)

第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);

例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数,

(1)若在区间上为“凸函数”,求m的取值范围;

(2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值.

解:由函数得

(1)在区间上为“凸函数”,

则在区间[0,3]上恒成立

解法一:从二次函数的区间最值入手:等价于

解法二:分离变量法:

∵当时,恒成立,

当时,恒成立

等价于的最大值()恒成立,

而()是增函数,则

(2)∵当时在区间上都为“凸函数”

则等价于当时恒成立

变更主元法

再等价于在恒成立(视为关于m的一次函数最值问题)

请同学们参看2010第三次周考:

例2:设函数

(Ⅰ)求函数f(x)的单调区间和极值;

(Ⅱ)若对任意的不等式恒成立,求a的取值范围.

(二次函数区间最值的例子)

解:(Ⅰ)

令得的单调递增区间为(a,3a)

令得的单调递减区间为(-,a)和(3a,+)

∴当x=a时,极小值=当x=3a时,极大值=b.

(Ⅱ)由||≤a,得:对任意的恒成立①

则等价于这个二次函数的对称轴(放缩法)

即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最值问题。

上是增函数.(9分)

于是,对任意,不等式①恒成立,等价于

点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系

第三种:构造函数求最值

题型特征:恒成立恒成立;从而转化为第一、二种题型

例3;已知函数图象上一点处的切线斜率为,

(Ⅰ)求的值;

(Ⅱ)当时,求的值域;

(Ⅲ)当时,不等式恒成立,求实数t的取值范围。

解:(Ⅰ)∴,解得

(Ⅱ)由(Ⅰ)知,在上单调递增,在上单调递减,在上单调递减

∴的值域是

(Ⅲ)令

思路1:要使恒成立,只需,即分离变量

思路2:二次函数区间最值

二、题型一:已知函数在某个区间上的单调性求参数的范围

解法1:转化为在给定区间上恒成立,回归基础题型

解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;

做题时一定要看清楚“在(m,n)上是减函数”与“函数的单调减区间是(a,b)”,要弄清楚两句话的区别:前者是后者的子集

例4:已知,函数.

(Ⅰ)如果函数是偶函数,求的极大值和极小值;

(Ⅱ)如果函数是上的单调函数,求的取值范围.

解:.

(Ⅰ)∵是偶函数,∴.此时,,

令,解得:.

列表如下:

(-∞,-2)

(-2,2)

(2,+∞)

极大值

极小值

可知:的极大值为,的极小值为.

(Ⅱ)∵函数是上的单调函数,

∴,在给定区间R上恒成立判别式法

则解得:.

综上,的取值范围是.

例5、已知函数

(I)求的单调区间;

(II)若在[0,1]上单调递增,求a的取值范围。子集思想

(I)

当且仅当时取“=”号,单调递增。

单调增区间:

单调增区间:

(II)当则是上述增区间的子集:

1、时,单调递增符合题意

2、,

综上,a的取值范围是[0,1]。

三、题型二:根的个数问题

题1函数f(x)与g(x)(或与x轴)的交点======即方程根的个数问题

解题步骤

第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;

第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;

第三步:解不等式(组)即可;

例6、已知函数,,且在区间上为增函数.

求实数的取值范围;

若函数与的图象有三个不同的交点,求实数的取值范围.

解:(1)由题意∵在区间上为增函数,

∴在区间上恒成立(分离变量法)

即恒成立,又,∴,故∴的取值范围为

(2)设,

令得或由(1)知,

①当时,,在R上递增,显然不合题意…

②当时,,随的变化情况如下表:

极大值

极小值

由于,欲使与的图象有三个不同的交点,即方程有三个不同的实根,故需,即∴,解得

综上,所求的取值范围为

根的个数知道,部分根可求或已知。

例7、已知函数

(1)若是的极值点且的图像过原点,求的极值;

(2)若,在(1)的条件下,是否存在实数,使得函数的图像与函数的图像恒有含的三个不同交点?若存在,求出实数的取值范围;否则说明理由。高1考1资1源2网

解:(1)∵的图像过原点,则,

又∵是的极值点,则

(2)设函数的图像与函数的图像恒存在含的三个不同交点,

等价于有含的三个根,即:

整理得:

即:恒有含的三个不等实根

(计算难点来了:)有含的根,

则必可分解为,故用添项配凑法因式分解,

十字相乘法分解:

恒有含的三个不等实根

等价于有两个不等于-1的不等实根。

题2:切线的条数问题====以切点为未知数的方程的根的个数

例7、已知函数在点处取得极小值-4,使其导数的的取值范围为,求:(1)的解析式;(2)若过点可作曲线的三条切线,求实数的取值范围.

(1)由题意得:

∴在上;在上;在上

因此在处取得极小值

∴①,②,③

由①②③联立得:,∴

(2)设切点Q,

求得:,方程有三个根。

故:;因此所求实数的范围为:

题3:已知在给定区间上的极值点个数则有导函数=0的根的个数

解法:根分布或判别式法

例8、

解:函数的定义域为(Ⅰ)当m=4时,f(x)=x3-x2+10x,

=x2-7x+10,令,解得或.

令,解得

可知函数f(x)的单调递增区间为和(5,+∞),单调递减区间为.

(Ⅱ)=x2-(m+3)x+m+6,

要使函数y=f(x)在(1,+∞)有两个极值点,=x2-(m+3)x+m+6=0的根在(1,+∞)

根分布问题:

则,解得m>3

例9、已知函数,(1)求的单调区间;(2)令=x4+f(x)(x∈R)有且仅有3个极值点,求a的取值范围.

解:(1)

当时,令解得,令解得,

所以的递增区间为,递减区间为.

当时,同理可得的递增区间为,递减区间为.

(2)有且仅有3个极值点

=0有3个根,则或,

方程有两个非零实根,所以

而当或时可证函数有且仅有3个极值点

其它例题:

1、(最值问题与主元变更法的.例子).已知定义在上的函数在区间上的最大值是5,最小值是-11.

(Ⅰ)求函数的解析式;

(Ⅱ)若时,恒成立,求实数的取值范围.

解:(Ⅰ)

令=0,得

因为,所以可得下表:

因此必为最大值,∴因此,,

即,∴,∴

(Ⅱ)∵,∴等价于,

令,则问题就是在上恒成立时,求实数的取值范围,

为此只需,即,

解得,所以所求实数的取值范围是[0,1].

2、(根分布与线性规划例子)

(1)已知函数

(Ⅰ)若函数在时有极值且在函数图象上的点处的切线与直线平行,求的解析式;

(Ⅱ)当在取得极大值且在取得极小值时,设点所在平面区域为S,经过原点的直线L将S分为面积比为1:3的两部分,求直线L的方程.

解:(Ⅰ).由,函数在时有极值,

又∵在处的切线与直线平行,

∴…………………….7分

(Ⅱ)解法一:由及在取得极大值且在取得极小值,

∴即令,则

∴∴故点所在平面区域S为如图△ABC,

易得,,,,,

同时DE为△ABC的中位线,

∴所求一条直线L的方程为:

另一种情况设不垂直于x轴的直线L也将S分为面积比为1:3的两部分,设直线L方程为,它与AC,BC分别交于F、G,则,

由得点F的横坐标为:

由得点G的横坐标为:

解得:或(舍去)故这时直线方程为:

综上,所求直线方程为:或.…………….………….12分

(Ⅱ)解法二:由及在取得极大值且在取得极小值,

∴即令,则

∴∴故点所在平面区域S为如图△ABC,

易得,,,,,

同时DE为△ABC的中位线,∴所求一条直线L的方程为:

另一种情况由于直线BO方程为:,设直线BO与AC交于H,

由得直线L与AC交点为:

∵,,

∴所求直线方程为:或

3、(根的个数问题)已知函数的图象如图所示。

(Ⅰ)求的值;

(Ⅱ)若函数的图象在点处的切线方程为,求函数f(x)的解析式;

(Ⅲ)若方程有三个不同的根,求实数a的取值范围。

解:由题知:

(Ⅰ)由图可知函数f(x)的图像过点(0,3),且=0

(Ⅱ)依题意=–3且f(2)=5

解得a=1,b=–6

所以f(x)=x3–6x2+9x+3

(Ⅲ)依题意f(x)=ax3+bx2–(3a+2b)x+3(a>0)

=3ax2+2bx–3a–2b由=0b=–9a①

若方程f(x)=8a有三个不同的根,当且仅当满足f(5)<8a

由①②得–25a+3<8a<7a+3

所以当

4、(根的个数问题)已知函数

(1)若函数在处取得极值,且,求的值及的单调区间;

(2)若,讨论曲线与的交点个数.

解:(1)

………………………………………………………………………2分

∴的单调递增区间为,,单调递减区间为…………5分

(2)由题得

令……………………6分

令得或……………………………………………7分

当即时

此时,,,有一个交点;…………………………9分

当即时,

∴当即时,有一个交点;

当即时,有两个交点;

当时,,有一个交点.………………………13分

综上可知,当或时,有一个交点;

当时,有两个交点.…………………………………14分

5、(简单切线问题)已知函数图象上斜率为3的两条切线间的距离为,函数.

(Ⅰ)若函数在处有极值,求的解析式;

(Ⅱ)若函数在区间上为增函数,且在区间上都成立,求实数的取值范围.

微积分导数求法总结 第8篇

1、导数的定义:在点处的导数记作.

2.导数的几何物理意义:曲线在点处切线的斜率

①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。

3.常见函数的导数公式:①;②;③;

⑤;⑥;⑦;⑧。

4.导数的四则运算法则:

5.导数的应用:

(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;

注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:

①求导数;

②求方程的根;

③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;

(3)求可导函数值与最小值的步骤:

ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!

导数是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

对于可导的函数f(x),x?f'(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数记为f'(x0),也记作y'│x=x0或dy/dx│x=x0

一、求导数的方法

(1)基本求导公式

(2)导数的四则运算

(3)复合函数的导数

设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即

二、关于极限

.1.数列的极限:

粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。记作:=A。如:

2函数的极限:

当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作

三、导数的概念

1、在处的导数.

2、在的导数.

3.函数在点处的导数的几何意义:

函数在点处的导数是曲线在处的切线的斜率,

即k=,相应的切线方程是

注:函数的导函数在时的函数值,就是在处的导数。

例、若=2,则=A-1B-2C1D

四、导数的综合运用

(一)曲线的切线

函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率.由此,可以利用导数求曲线的切线方程.具体求法分两步:

(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=;

(2)在已知切点坐标和切线斜率的条件下,求得切线方程为_。

微积分导数求法总结 第9篇

高中数学导数知识点总结

(一)导数第一定义

设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 △x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第一定义

(二)导数第二定义

设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时,相应地函数变化 △y = f(x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即 导数第二定义

(三)导函数与导数

如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y', f'(x), dy/dx, df(x)/dx。导函数简称导数。

(四)单调性及其应用

1.利用导数研究多项式函数单调性的一般步骤

(1)求f(x)

(2)确定f(x)在(a,b)内符号 (3)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数

2.用导数求多项式函数单调区间的一般步骤

(1)求f(x)

(2)f(x)>0的解集与定义域的.交集的对应区间为增区间; f(x)<0的解集与定义域的交集的对应区间为减区间

学习了导数基础知识点,接下来可以学习高二数学中涉及到的导数应用的部分。

微积分导数求法总结 第10篇

导数: 导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)

1、导数的定义: 在点 处的导数记作 .

2. 导数的几何物理意义:曲线 在点 处切线的斜率

①=f/(x0)表示过曲线=f(x)上P(x0,f(x0))切线斜率。V=s/(t) 表示即时速度。a=v/(t) 表示加速度。

3.常见函数的导数公式: ① ;② ;③ ;

⑤ ;⑥ ;⑦ ;⑧ 。

4.导数的四则运算法则:

5.导数的应用:

(1)利用导数判断函数的单调性:设函数 在某个区间内可导,如果 ,那么 为增函数;如果 ,那么为减函数;

注意:如果已知 为减函数求字母取值范围,那么不等式 恒成立。

(2)求极值的步骤:

①求导数 ;

②求方程 的根;

③列表:检验 在方程 根的左右的符号,如果左正右负,那么函数 在这个根处取得极大值;如果左负右正,那么函数 在这个根处取得极小值;

(3)求可导函数最大值与最小值的步骤:

ⅰ求 的根; ⅱ把根与区间端点函数值比较,最大的为最大值,最小的是最小值。

导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!

导数是微积分中的重要基础概念。当函数=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δ与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

对于可导的函数f(x),xf'(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

设函数=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δ=f(x0+Δx)-f(x0);如果Δ与Δx之比当Δx→0时极限存在,则称函数=f(x)在点x0处可导,并称这个极限为函数=f(x)在点x0处的导数记为f'(x0),也记作'│x=x0或d/dx│x=x0

微积分导数求法总结 第11篇

苏教版导数知识点总结

苏教版导数知识点总结

考试内容:

导数的背影.

导数的概念.

多项式函数的导数.

利用导数研究函数的单调性和极值.函数的最大值和最小值.

考试要求:

(1)了解导数概念的某些实际背景.

(2)理解导数的几何意义.

(3)掌握函数,y=c(c为常数)、y=xn(n∈N+)的`导数公式,会求多项式函数的导数.

(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.

(5)会利用导数求某些简单实际问题的最大值和最小值.

知识要点:

知识要点:

微积分导数求法总结 第12篇

数学导数知识点总结

1、导数的定义:在点处的导数记作.

2.导数的几何物理意义:曲线在点处切线的斜率

①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。

3.常见函数的导数公式:①;②;③;

⑤;⑥;⑦;⑧。

4.导数的四则运算法则:

5.导数的应用:

(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;

注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:

①求导数;

②求方程的根;

③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;

(3)求可导函数值与最小值的步骤:

ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!

导数是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数记为f'(x0),也记作y'│x=x0或dy/dx│x=x0

函数与导数

第一、求函数定义域题忽视细节函数的定义域是使函数有意义的自变量的取值范围,考生想要在考场上准确求出定义域,就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。在求一般函数定义域时,要注意以下几点:分母不为0;偶次被开放式非负;真数大于0以及0的0次幂无意义。函数的定义域是非空的数集,在解答函数定义域类的题时千万别忘了这一点。复合函数要注意外层函数的定义域由内层函数的值域决定。

第二、带绝对值的函数单调性判断错误带绝对值的函数实质上就是分段函数,判断分段函数的单调性有两种方法:第一,在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,然后对各个段上的单调区间进行整合;第二,画出这个分段函数的图象,结合函数图象、性质能够进行直观的判断。函数题离不开函数图象,而函数图象反应了函数的所有性质,考生在解答函数题时,要第一时间在脑海中画出函数图象,从图象上分析问题,解决问题。对于函数不同的单调递增(减)区间,千万记住,不要使用并集,指明这几个区间是该函数的单调递增(减)区间即可。

第三、求函数奇偶性的常见错误求函数奇偶性类的题最常见的错误有求错函数定义域或忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断。在用定义进行判断时,要注意自变量在定义域区间内的任意性。

第四、抽象函数推理不严谨很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计的,在解答此类问题时,考生可以通过类比这类函数中一些具体函数的性质去解决抽象函数。多用特殊赋值法,通过特殊赋可以找到函数的不变性质,这往往是问题的突破口。抽象函数性质的证明属于代数推理,和几何推理证明一样,考生在作答时要注意推理的严谨性。每一步都要有充分的条件,别漏掉条件,更不能臆造条件,推理过程层次分明,还要注意书写规范。

第五、函数零点定理使用不当若函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)f(b)

第六、混淆两类切线曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此,考生在求解曲线的切线问题时,首先要区分是什么类型的切线。

第七、混淆导数与单调性的关系一个函数在某个区间上是增函数的这类题型,如果考生认为函数的导函数在此区间上恒大于0,很容易就会出错。解答函数的单调性与其导函数的关系时一定要注意,一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。

微积分导数求法总结 第13篇

1.导数的常规问题:

(1)刻画函数(比初等方法精确细微);

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

知识整合

1.导数概念的理解。

2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。

复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

3.要能正确求导,必须做到以下两点:

(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导

显示全文

注:本文部分文字与图片资源来自于网络,转载此文是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即后台留言通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意

点击下载文档

文档为doc格式

发表评论

评论列表(7人评论 , 39人围观)

点击下载
本文文档